6 research outputs found

    Irinotecan and its metabolite SN38 inhibits procollagen I production of dermal fibroblasts from Systemic Sclerosis patients

    Get PDF
    Systemic sclerosis (SSc) is a rare autoimmune connective tissue disease characterized by a microangiopathy and fibrosis of the skin and internal organs. No treatment has been proved to be efficient in case of early or advanced SSc to prevent or reduce fibrosis. There are strong arguments for a key role of topo-I in the pathogenesis of diffuse SSc. Irinotecan, a semisynthetic derivative of Camptothecin, specifically target topo-I. This study was undertaken to evaluate the effects of noncytotoxic doses of irinotecan or its active metabolite SN38 on collagen production in SSc fibroblasts. Dermal fibroblasts from 4 patients with SSc and 2 healthy donors were cultured in the presence or absence of irinotecan or SN38. Procollagen I release was determined by ELISA and expression of a panel of genes involved in fibrosis was evaluated by qRT-PCR. Subcytotoxic doses of irinotecan and SN38 caused a significant and dose-dependent decrease of the procollagen I production in dermal fibroblasts from SSc patients, respectively - 48 ± 3%, p < 0.0001 and - 37 ± 6.2%, p = 0.0097. Both irinotecan and SN38 led to a global downregulation of genes involved in fibrosis such as COL1A1, COL1A2, MMP1 and ACTA2 in dermal fibroblasts from SSc patients (respectively - 27; - 20.5; - 30.2 and - 30% for irinotecan and - 61; - 55; - 50 and - 54% for SN38). SN38 increased significantly CCL2 mRNA level (+ 163%). The inhibitory effect of irinotecan and its active metabolite SN38 on collagen production by SSc fibroblasts, which occurs through regulating the levels of expression of genes mRNA, suggests that topoisomerase I inhibitors may be effective in limiting fibrosis in such patients

    TGFβ promotes low IL10-producing ILC2 with profibrotic ability involved in skin fibrosis in systemic sclerosis

    Get PDF
    Objective : Innate lymphoid cells-2 (ILC2) were shown to be involved in the development of lung or hepatic fibrosis. We sought to explore the functional and phenotypic heterogeneity of ILC2 in skin fibrosis within systemic sclerosis (SSc). Methods : Blood samples and skin biopsies from healthy donor or patients with SSc were analysed by immunostaining techniques. The fibrotic role of sorted ILC2 was studied in vitro on dermal fibroblast and further explored by transcriptomic approach. Finally, the efficacy of a new treatment against fibrosis was assessed with a mouse model of SSc. Results : We found that ILC2 numbers were increased in the skin of patients with SSc and correlated with the extent of skin fibrosis. In SSc skin, KLRG1− ILC2 (natural ILC2) were dominating over KLRG1+ ILC2 (inflammatory ILC2). The cytokine transforming growth factor-β (TGFβ), whose activity is increased in SSc, favoured the expansion of KLRG1- ILC2 simultaneously decreasing their production of interleukin 10 (IL10), which regulates negatively collagen production by dermal fibroblasts. TGFβ-stimulated ILC2 also increased myofibroblast differentiation. Thus, human KLRG1- ILC2 had an enhanced profibrotic activity. In a mouse model of SSc, therapeutic intervention-combining pirfenidone with the administration of IL10 was required to reduce the numbers of skin infiltrating ILC2, enhancing their expression of KLRG1 and strongly alleviating skin fibrosis. Conclusion : Our results demonstrate a novel role for natural ILC2 and highlight their inter-relationships with TGFβ and IL10 in the development of skin fibrosis, thereby opening up new therapeutic approaches in SSc

    Role of extracellular vesicles in autoimmune diseases

    No full text
    Extracellular vesicles (EVs) consist of exosomes released upon fusion of multivesicular bodies with the cell plasma membrane and microparticles shed directly from the cell membrane of many cell types. EVs can mediate cell-cell communication and are involved in many processes including inflammation, immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. Accumulating evidence reveals that EVs act in the establishment, maintenance and modulation of autoimmune processes among several others involved in cancer and cardiovascular complications. EVs could also present biomedical applications, as disease biomarkers and therapeutic targets or agents for drug delivery

    Potential role of Mycoplasma hominis in Interleukin (IL)–17–Producing CD4+ T-Cell generation via induction of IL-23 secretion by human dendritic cells

    No full text
    Background. Mycoplasma hominis, a human urogenital pathogen, is involved in genital and extragenital infections and arthritis, particularly in immunocompromised patients. The interleukin (IL) 23/T helper (Th) 17 axis is associated with inflammatory and autoimmune diseases. The aim of this study was to assess the IL-23 response to M. hominis in human dendritic cells (DCs) and the CD4+ T-cell differentiation in response to M. hominis–infected DCs. Methods. Human monocyte–derived DCs were cultured with phosphate-buffered saline, lipopolysaccharide, or M. hominis PG21. Cocultures with heterologous T cells were performed. Extracts from M. hominis were separated and incubated with DCs. Isolates from different clinical syndromes were tested. Results. M. hominis induced the maturation of human DCs with predominant IL-23 secretion in a Toll-like receptor 2–dependent manner. The in vitro immunomodulatory capacity of M. hominis was contained in a lipoprotein-enriched fraction from the mycoplasma. M. hominis–activated DCs induced IL-17–producing CD4+ T cells. Interestingly, clinical isolates differed in their ability to promote IL-23 secretion by DCs. Conclusions. Taken together, our findings demonstrate a major role for the IL-23/Th17 axis in the defense against M. hominis and indicate a potential role for these bacteria in inflammatory and autoimmune diseases

    Selectins impair regulatory T cell function and contribute to systemic lupus erythematosus pathogenesis

    No full text
    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a loss of tolerance toward self-nucleic acids, autoantibody production, interferon expression and signaling, and a defect in the regulatory T (T(reg)) cell compartment. In this work, we identified that platelets from patients with active SLE preferentially interacted with T(reg) cells via the P-selectin/P-selectin glycoprotein ligand-1 (PSGL-1) axis. Selectin interaction with PSGL-1 blocked the regulatory and suppressive properties of T(reg) cells and particularly follicular T(reg) cells by triggering Syk phosphorylation and an increase in intracytosolic calcium. Mechanistically, P-selectin engagement on T(reg) cells induced a down-regulation of the transforming growth factor-β axis, altering the phenotype of T(reg) cells and limiting their immunosuppressive responses. In patients with SLE, we found an up-regulation of P- and E-selectin both on microparticles and in their soluble forms that correlated with disease activity. Last, blocking P-selectin in a mouse model of SLE improved cardinal features of the disease, such as anti-dsDNA antibody concentrations and kidney pathology. Overall, our results identify a P-selectin-dependent pathway that is active in patients with SLE and validate it as a potential therapeutic avenue
    corecore