4 research outputs found

    Application to crankshaft manufacturing methodology, results and analysis

    Get PDF
    The gain of productivity in machining is generally sought through tools and/or cutting conditions optimization however an increase in productivity is achievable too through the workmaterial optimization. The metallurgical structure as well as the chemical composition of steels widely influence their ability to be machined. Mittal Steel Europe R & D develops new steel grades such as the Super High Strength Steels whose tensile stresses may reach 1000 or 1200 MPa. A cooperative research program between Mittal Steel Europe R&D and ENSAM tends to propose a methodology able to sort the steel grades in terms of ability to be manufactured (in forging and machining). This study focuses on such an industrial application : the heavy vehicles crankshaft manufacturing. The operation investigated consists in deep hole drilling and is concerned with the lubrication holes. This paper proposes some relevant criteria to compare the different steel grades and/or structures. Some experimental results are proposed

    Machinability in dry carbide drilling

    Get PDF
    Intensive weight savings and out-sizing programs are developed in automotive industry and lead to increase the mechanical properties of the material of the automotive parts. ArcelorMittal has developed specific steel grades known as Super High Strength Steels which are designed for both high ductility and toughness and fatigue resistance. This paper investigates machinability for a drilling operation using an experimental methodology. One of the materials is a new low bainitic steel grade. Experiments are performed with a coated carbide solid drill. Thrust force and torque measurements, chip morphology analysis, surface quality monitoring and tool wear tests are carried out. Experiments are performed with and without lubricant

    Application to crankshaft manufacturing methodology, results and analysis

    Get PDF
    The gain of productivity in machining is generally sought through tools and/or cutting conditions optimization however an increase in productivity is achievable too through the workmaterial optimization. The metallurgical structure as well as the chemical composition of steels widely influence their ability to be machined. Mittal Steel Europe R & D develops new steel grades such as the Super High Strength Steels whose tensile stresses may reach 1000 or 1200 MPa. A cooperative research program between Mittal Steel Europe R&D and ENSAM tends to propose a methodology able to sort the steel grades in terms of ability to be manufactured (in forging and machining). This study focuses on such an industrial application : the heavy vehicles crankshaft manufacturing. The operation investigated consists in deep hole drilling and is concerned with the lubrication holes. This paper proposes some relevant criteria to compare the different steel grades and/or structures. Some experimental results are proposed

    Machinability in dry carbide drilling

    Get PDF
    Intensive weight savings and out-sizing programs are developed in automotive industry and lead to increase the mechanical properties of the material of the automotive parts. ArcelorMittal has developed specific steel grades known as Super High Strength Steels which are designed for both high ductility and toughness and fatigue resistance. This paper investigates machinability for a drilling operation using an experimental methodology. One of the materials is a new low bainitic steel grade. Experiments are performed with a coated carbide solid drill. Thrust force and torque measurements, chip morphology analysis, surface quality monitoring and tool wear tests are carried out. Experiments are performed with and without lubricant
    corecore