332 research outputs found

    Academic Intensive Care Units: What is the Impact on Student Achievement?

    Get PDF
    The purpose of this study was to determine if academic intensive care units along with no-zero grading policies at the high school level result in students having higher achievement levels on state EOC assessments. A mixed-methods approach was taken in order to obtain both qualitative and quantitative data from surveys and interviews. Additional quantitative data were analyzed from archival data. Two separate schools were chosen for the populations. High School A implemented academic intensive care units and no-zero grading polices while High School B did not. Participants in the study consisted of both teachers and students at High School A and High School B. Although a conclusion was made indicating academic intensive care units along with no-zero grading policies at the high school level do not result in students having higher achievement on state EOC assessments, further research is needed

    Commercial Fisheries News 3/2007

    Get PDF

    Spin Physics at COMPASS

    Full text link
    The COMPASS experiment is a fixed target experiment at the CERN SPS using muon and hadron beams for the investigation of the spin structure of the nucleon and hadron spectroscopy. The main objective of the muon physics program is the study of the spin of the nucleon in terms of its constituents, quarks and gluons. COMPASS has accumulated data during 6 years scattering polarized muons off a longitudinally or a transversely polarized deuteron (6LiD) or proton (NH3) target. Results for the gluon polarization are obtained from longitudinal double spin cross section asymmetries using two different channels, open charm production and high transverse momentum hadron pairs, both proceeding through the photon-gluon fusion process. Also, the longitudinal spin structure functions of the proton and the deuteron were measured in parallel as well as the helicity distributions for the three lightest quark flavors. With a transversely polarized target, results were obtained with proton and deuteron targets for the Collins and Sivers asymmetries for charged hadrons as well as for identified kaons and pions. The Collins asymmetry is sensitive to the transverse spin structure of the nucleon, while the Sivers asymmetry reflects correlations between the quark transverse momentum and the nucleon spin. Recently, a new proposal for the COMPASS II experiment was accepted by the CERN SPS which includes two new topics: Exclusive reactions like DVCS and DVMP using the muon beam and a hydrogen target to study generalized parton distributions and Drell-Yan measurements using a pion beam and a polarized NH3 target to study transverse momentum dependent distributions.Comment: Proceedings of the Rutherford conference, Manchester, August 2011. Changes due to referees comments implemente

    New pixelized Micromegas detector for the COMPASS experiment

    Get PDF
    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm^2, 10 times larger than for the present detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Studies were done with the present detectors moved in the beam, and two first pixelized prototypes are being tested with muon and hadron beams in real conditions at COMPASS. We present here this new project and report on two series of tests, with old detectors moved into the beam and with pixelized prototypes operated in real data taking condition with both muon and hadron beams.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous Detectors conference (MPGD2009), 12-15 June 2009, Kolympari, Crete, Greece Minor details added and language corrections don

    Radiative Corrections to High Energy Lepton Bremsstrahlung on Heavy Nuclei

    Full text link
    One-loop radiative corrections to the leptonic tensor in high energy bremsstrahlung on heavy nuclei are calculated. Virtual and real photon radiation is taken into account. Double bremsstrahlung is simulated by means of Monte Carlo. Numerical results are presented for the case of muon bremsstrahlung in conditions of the COMPASS experiment at CERN.Comment: 7 pages, 1 figur

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Effects of Quark Spin Flip on the Collins Fragmentation Function in a Toy Model

    Full text link
    The recent extension of the NJL-jet model to hadronization of transversely polarized quarks allowed the study of the Collins fragmentation function. Both favored and unfavored Collins fragmentation functions were generated, the latter purely by multiple hadron emissions, with 1/2 moments of opposite sign in the region of the light-cone momentum fraction zz accessible in current experiments. Hints of such behavior has been seen in the measurements in several experiments. Also, in the transverse momentum dependent (TMD) hadron emission probabilities, modulations of up to fourth order in sine of the polar angle were observed, while the Collins effect describes just the linear modulations. A crucial part of the extended model was the calculation of the quark spin flip probability after each hadron emission in the jet. Here we study the effects of this probability on the resulting unfavored and favored Collins functions by setting it as a constant and use a toy model for the elementary single hadron emission probabilities. The results of the Monte Carlo simulations showed that preferential quark spin flip in the elementary hadron emission is needed to generate the favored and unfavored Collins functions with opposite sign 1/2 moments. For the TMD hadron emission modulations, we showed that the model quark spin flip probabilities are a partial source of the higher rode modulations, while the other source is the Collins modulation of the remnant quark from the hadron emission recoil.Comment: 7 pages, 6 figures. To appear in proceedings of HITES 2012, Conference in Honor of Jerry P. Draayer, Horizons of Innovative Theories, Experiments, and Supercomputing in Nuclear Physics, New Orleans, Louisiana, June 4-7, 201

    Uzdužna spinska struktura pri COMPASSU

    Get PDF
    COMPASS is a fixed-target experiment at CERN\u27s Super-Proton-Synchrotron. Part of its physics program is dedicated to the spin structure of the nucleon, which it studies with a 160 GeV polarized muon beam and polarized targets. An overview of its measurements performed with longitudinal target polarization is given. In particular, recent results, concerning the gluon polarization, the separation of the contributions of the individual quark flavors and the test of the Bjorken sum rule, are presented.COMPASS su mjerenja na mirnoj meti pri super protonskom sinkrotronu u CERNu. Dio programa njegovih istraživanja posvećen je spinskoj strukturi nukleona što se proučava sa snopom polariziranih muona energije 160 GeV i polariziranim metama. Izlaže se pregled mjerenja izvedenih s uzdužno polarizaciranim metama. Posebice se izlažu nedavni ishodi za gluonsku polarizaciju, razdjela doprinosa pojedinačnih kvarkovskih okusa i provjera Bjorkenovog pravila suma
    corecore