6 research outputs found
COMAP Early Science: III. CO Data Processing
We describe the first season COMAP analysis pipeline that converts raw
detector readouts to calibrated sky maps. This pipeline implements four main
steps: gain calibration, filtering, data selection, and map-making. Absolute
gain calibration relies on a combination of instrumental and astrophysical
sources, while relative gain calibration exploits real-time total-power
variations. High efficiency filtering is achieved through spectroscopic
common-mode rejection within and across receivers, resulting in nearly
uncorrelated white noise within single-frequency channels. Consequently,
near-optimal but biased maps are produced by binning the filtered time stream
into pixelized maps; the corresponding signal bias transfer function is
estimated through simulations. Data selection is performed automatically
through a series of goodness-of-fit statistics, including and
multi-scale correlation tests. Applying this pipeline to the first-season COMAP
data, we produce a dataset with very low levels of correlated noise. We find
that one of our two scanning strategies (the Lissajous type) is sensitive to
residual instrumental systematics. As a result, we no longer use this type of
scan and exclude data taken this way from our Season 1 power spectrum
estimates. We perform a careful analysis of our data processing and observing
efficiencies and take account of planned improvements to estimate our future
performance. Power spectrum results derived from the first-season COMAP maps
are presented and discussed in companion papers.Comment: Paper 3 of 7 in series. 26 pages, 23 figures, submitted to Ap
COMAP Early Science: IV. Power Spectrum Methodology and Results
We present the power spectrum methodology used for the first-season COMAP
analysis, and assess the quality of the current data set. The main results are
derived through the Feed-feed Pseudo-Cross-Spectrum (FPXS) method, which is a
robust estimator with respect to both noise modeling errors and experimental
systematics. We use effective transfer functions to take into account the
effects of instrumental beam smoothing and various filter operations applied
during the low-level data processing. The power spectra estimated in this way
have allowed us to identify a systematic error associated with one of our two
scanning strategies, believed to be due to residual ground or atmospheric
contamination. We omit these data from our analysis and no longer use this
scanning technique for observations. We present the power spectra from our
first season of observing and demonstrate that the uncertainties are
integrating as expected for uncorrelated noise, with any residual systematics
suppressed to a level below the noise. Using the FPXS method, and combining
data on scales we estimate , the first direct 3D
constraint on the clustering component of the CO(1-0) power spectrum in the
literature.Comment: Paper 4 of 7 in series. 18 pages, 11 figures, as accepted in Ap
COMAP Early Science: I. Overview
The CO Mapping Array Project (COMAP) aims to use line intensity mapping of
carbon monoxide (CO) to trace the distribution and global properties of
galaxies over cosmic time, back to the Epoch of Reionization (EoR). To validate
the technologies and techniques needed for this goal, a Pathfinder instrument
has been constructed and fielded. Sensitive to CO(1-0) emission from
- and a fainter contribution from CO(2-1) at -8, the
Pathfinder is surveying deg in a 5-year observing campaign to detect
the CO signal from . Using data from the first 13 months of observing,
we estimate on scales - the first direct
3D constraint on the clustering component of the CO(1-0) power spectrum. Based
on these observations alone, we obtain a constraint on the amplitude of the
clustering component (the squared mean CO line temperature-bias product) of
K - nearly an order-of-magnitude improvement
on the previous best measurement. These constraints allow us to rule out two
models from the literature. We forecast a detection of the power spectrum after
5 years with signal-to-noise ratio (S/N) 9-17. Cross-correlation with an
overlapping galaxy survey will yield a detection of the CO-galaxy power
spectrum with S/N of 19. We are also conducting a 30 GHz survey of the Galactic
plane and present a preliminary map. Looking to the future of COMAP, we examine
the prospects for future phases of the experiment to detect and characterize
the CO signal from the EoR.Comment: Paper 1 of 7 in series. 18 pages, 16 figures, submitted to Ap
A Model of Spectral Line Broadening in Signal Forecasts for Line-intensity Mapping Experiments
Line-intensity mapping observations will find fluctuations of integrated line
emission are attenuated by varying degrees at small scales due to the width of
the line emission profiles. This attenuation may significantly impact estimates
of astrophysical or cosmological quantities derived from measurements. We
consider a theoretical treatment of the effect of line broadening on both the
clustering and shot-noise components of the power spectrum of a generic
line-intensity power spectrum using a halo model. We then consider possible
simplifications to allow easier application in analysis, particularly in the
context of inferences that require numerous, repeated, fast computations of
model line-intensity signals across a large parameter space. For the CO Mapping
Array Project (COMAP) and the CO(1-0) line-intensity field at serving
as our primary case study, we expect a attenuation of the
spherically averaged power spectrum on average at relevant scales of
- Mpc, compared to for the interferometric
Millimetre-wave Intensity Mapping Experiment (mmIME) targeting shot noise from
CO lines at - at scales of Mpc. We also consider
the nature and amplitude of errors introduced by simplified treatments of line
broadening, and find that while an approximation using a single effective
velocity scale is sufficient for spherically-averaged power spectra, a more
careful treatment is necessary when considering other statistics such as higher
multipoles of the anisotropic power spectrum or the voxel intensity
distribution.Comment: 24 pages + appendix and bibliography (33 pages total), 16 figures, 2
tables; accepted for publication in Ap
COMAP Pathfinder – Season 2 results
The CO Mapping Array Project (COMAP) Pathfinder is performing line intensity mapping of CO emission to trace the distribution of unresolved galaxies at redshift z ∼ 3. We present an improved version of the COMAP data processing pipeline and apply it to the first two Seasons of observations. This analysis improves on the COMAP Early Science (ES) results in several key aspects. On the observational side, all second season scans were made in constant-elevation mode, after noting that the previous Lissajous scans were associated with increased systematic errors; those scans accounted for 50% of the total Season 1 data volume. In addition, all new observations were restricted to an elevation range of 35–65 degrees to minimize sidelobe ground pickup. On the data processing side, more effective data cleaning in both the time and map domain allowed us to eliminate all data-driven power spectrum-based cuts. This increases the overall data retention and reduces the risk of signal subtraction bias. However, due to the increased sensitivity, two new pointing-correlated systematic errors have emerged, and we introduced a new map-domain PCA filter to suppress these errors. Subtracting only five out of 256 PCA modes, we find that the standard deviation of the cleaned maps decreases by 67% on large angular scales, and after applying this filter, the maps appear consistent with instrumental noise. Combining all of these improvements, we find that each hour of raw Season 2 observations yields on average 3.2 times more cleaned data compared to the ES analysis. Combining this with the increase in raw observational hours, the effective amount of data available for high-level analysis is a factor of eight higher than in the ES analysis. The resulting maps have reached an uncertainty of 25–50 μK per voxel, providing by far the strongest constraints on cosmological CO line emission published to date
COMAP Pathfinder – Season 2 results
The Carbon monOxide Mapping Array Project (COMAP) Pathfinder survey continues to demonstrate the feasibility of line-intensity mapping using high-redshift carbon monoxide (CO) line emission traced at cosmological scales. The latest COMAP Pathfinder power spectrum analysis is based on observations through the end of Season 2, covering the first three years of Pathfinder operations. We use our latest constraints on the CO(1–0) line-intensity power spectrum at z ~ 3 to update corresponding constraints on the cosmological clustering of CO line emission and thus the cosmic molecular gas content at a key epoch of galaxy assembly. We first mirror the COMAP Early Science interpretation, considering how Season 2 results translate to limits on the shot noise power of CO fluctuations and the bias of CO emission as a tracer of the underlying dark matter distribution. The COMAP Season 2 results place the most stringent limits on the CO tracer bias to date, at ⟨T b⟩ < 4.8 μK, which translates to a molecular gas density upper limit of ρH2 < 1.6 × 108 M⊙ Mpc−3 at z ~ 3 given additional model assumptions. These limits narrow the model space significantly compared to previous CO line-intensity mapping results while maintaining consistency with small-volume interferometric surveys of resolved line candidates. The results also express a weak preference for CO emission models used to guide fiducial forecasts from COMAP Early Science, including our data-driven priors. We also consider directly constraining a model of the halo–CO connection, and show qualitative hints of capturing the total contribution of faint CO emitters through the improved sensitivity of COMAP data. With continued observations and matching improvements in analysis, the COMAP Pathfinder remains on track for a detection of cosmological clustering of CO emission
