4 research outputs found

    Neurofilament light as an outcome predictor after cardiac arrest : a post hoc analysis of the COMACARE trial

    Get PDF
    Purpose Neurofilament light (NfL) is a biomarker reflecting neurodegeneration and acute neuronal injury, and an increase is found following hypoxic brain damage. We assessed the ability of plasma NfL to predict outcome in comatose patients after out-of-hospital cardiac arrest (OHCA). We also compared plasma NfL concentrations between patients treated with two different targets of arterial carbon dioxide tension (PaCO2), arterial oxygen tension (PaO2), and mean arterial pressure (MAP). Methods We measured NfL concentrations in plasma obtained at intensive care unit admission and at 24, 48, and 72 h after OHCA. We assessed neurological outcome at 6 months and defined a good outcome as Cerebral Performance Category (CPC) 1-2 and poor outcome as CPC 3-5. Results Six-month outcome was good in 73/112 (65%) patients. Forty-eight hours after OHCA, the median NfL concentration was 19 (interquartile range [IQR] 11-31) pg/ml in patients with good outcome and 2343 (587-5829) pg/ml in those with poor outcome,p <0.001. NfL predicted poor outcome with an area under the receiver operating characteristic curve (AUROC) of 0.98 (95% confidence interval [CI] 0.97-1.00) at 24 h, 0.98 (0.97-1.00) at 48 h, and 0.98 (0.95-1.00) at 72 h. NfL concentrations were lower in the higher MAP (80-100 mmHg) group than in the lower MAP (65-75 mmHg) group at 48 h (median, 23 vs. 43 pg/ml,p = 0.04). PaCO(2)and PaO(2)targets did not associate with NfL levels. Conclusions NfL demonstrated excellent prognostic accuracy after OHCA. Higher MAP was associated with lower NfL concentrations.Peer reviewe

    Targeting low-normal or high-normal mean arterial pressure after cardiac arrest and resuscitation : a randomised pilot trial

    Get PDF
    PurposeWe aimed to determine the feasibility of targeting low-normal or high-normal mean arterial pressure (MAP) after out-of-hospital cardiac arrest (OHCA) and its effect on markers of neurological injury. MethodsIn the Carbon dioxide, Oxygen and Mean arterial pressure After Cardiac Arrest and REsuscitation (COMACARE) trial, we used a 2(3) factorial design to randomly assign patients after OHCA and resuscitation to low-normal or high-normal levels of arterial carbon dioxide tension, to normoxia or moderate hyperoxia, and to low-normal or high-normal MAP. In this paper we report the results of the low-normal (65-75mmHg) vs. high-normal (80-100mmHg) MAP comparison. The primary outcome was the serum concentration of neuron-specific enolase (NSE) at 48h after cardiac arrest. The feasibility outcome was the difference in MAP between the groups. Secondary outcomes included S100B protein and cardiac troponin (TnT) concentrations, electroencephalography (EEG) findings, cerebral oxygenation and neurological outcome at 6months after cardiac arrest.ResultsWe recruited 123 patients and included 120 in the final analysis. We found a clear separation in MAP between the groups (pPeer reviewe

    Targeting low- or high-normal Carbon dioxide, Oxygen, and Mean arterial pressure After Cardiac Arrest and REsuscitation : study protocol for a randomized pilot trial

    Get PDF
    Background: Arterial carbon dioxide tension (PaCO2), oxygen tension (PaO2), and mean arterial pressure (MAP) are modifiable factors that affect cerebral blood flow (CBF), cerebral oxygen delivery, and potentially the course of brain injury after cardiac arrest. No evidence regarding optimal treatment targets exists. Methods: The Carbon dioxide, Oxygen, and Mean arterial pressure After Cardiac Arrest and REsuscitation (COMACARE) trial is a pilot multi-center randomized controlled trial (RCT) assessing the feasibility of targeting low-or high-normal PaCO2, PaO2, and MAP in comatose, mechanically ventilated patients after out-of-hospital cardiac arrest (OHCA), as well as its effect on brain injury markers. Using a 23 factorial design, participants are randomized upon admission to an intensive care unit into one of eight groups with various combinations of PaCO2, PaO2, and MAP target levels for 36 h after admission. The primary outcome is neuron-specific enolase (NSE) serum concentration at 48 h after cardiac arrest. The main feasibility outcome is the between-group differences in PaCO2, PaO2, and MAP during the 36 h after ICU admission. Secondary outcomes include serum concentrations of NSE, S100 protein, and cardiac troponin at 24, 48, and 72 h after cardiac arrest; cerebral oxygenation, measured with near-infrared spectroscopy (NIRS); potential differences in epileptic activity, monitored via continuous electroencephalogram (EEG); and neurological outcomes at six months after cardiac arrest. Discussion: The trial began in March 2016 and participant recruitment has begun in all seven study sites as of March 2017. Currently, 115 of the total of 120 patients have been included. When completed, the results of this trial will provide preliminary clinical evidence regarding the feasibility of targeting low-or high-normal PaCO2, PaO2, and MAP values and its effect on developing brain injury, brain oxygenation, and epileptic seizures after cardiac arrest. The results of this trial will be used to evaluate whether a larger RCT on this subject is justified.Peer reviewe

    Targeting two different levels of both arterial carbon dioxide and arterial oxygen after cardiac arrest and resuscitation : a randomised pilot trial

    Get PDF
    PurposeWe assessed the effects of targeting low-normal or high-normal arterial carbon dioxide tension (PaCO2) and normoxia or moderate hyperoxia after out-of-hospital cardiac arrest (OHCA) on markers of cerebral and cardiac injury.MethodsUsing a 2(3) factorial design, we randomly assigned 123 patients resuscitated from OHCA to low-normal (4.5-4.7kPa) or high-normal (5.8-6.0kPa) PaCO2 and to normoxia (arterial oxygen tension [PaO2] 10-15kPa) or moderate hyperoxia (PaO2 20-25kPa) and to low-normal or high-normal mean arterial pressure during the first 36h in the intensive care unit. Here we report the results of the low-normal vs. high-normal PaCO2 and normoxia vs. moderate hyperoxia comparisons. The primary endpoint was the serum concentration of neuron-specific enolase (NSE) 48h after cardiac arrest. Secondary endpoints included S100B protein and cardiac troponin concentrations, continuous electroencephalography (EEG) and near-infrared spectroscopy (NIRS) results and neurologic outcome at 6months.ResultsIn total 120 patients were included in the analyses. There was a clear separation in PaCO2 (pPeer reviewe
    corecore