455 research outputs found

    Critical Statistical Charge for Anyonic Superconductivity

    Full text link
    We examine a criterion for the anyonic superconductivity at zero temperature in Abelian matter-coupled Chern-Simons gauge field theories in three dimensions. By solving the Dyson-Schwinger equations, we obtain a critical value of the statistical charge for the superconducting phase in a massless fermion-Chern-Simons model.Comment: 11 pages; to appear in Phys Rev

    Interacting one dimensional electron gas with open boundaries

    Full text link
    We discuss the properties of interacting electrons on a finite chain with open boundary conditions. We extend the Haldane Luttinger liquid description to these systems and study how the presence of the boundaries modifies various correlation functions. In view of possible experimental applications to quantum wires, we analyse how tunneling measurements can reveal the underlying Luttinger liquid properties. The two terminal conductance is calculated. We also point out possible applications to quasi one dimensional materials and study the effects of magnetic impurities.Comment: 38 pages, ReVTeX, 7 figures (available upon request

    Fluctuating Nematic Elastomer Membranes: a New Universality Class

    Full text link
    We study the flat phase of nematic elastomer membranes with rotational symmetry spontaneously broken by in-plane nematic order. Such state is characterized by a vanishing elastic modulus for simple shear and soft transverse phonons. At harmonic level, in-plane orientational (nematic) order is stable to thermal fluctuations, that lead to short-range in-plane translational (phonon) correlations. To treat thermal fluctuations and relevant elastic nonlinearities, we introduce two generalizations of two-dimensional membranes in a three dimensional space to arbitrary D-dimensional membranes embedded in a d-dimensional space, and analyze their anomalous elasticities in an expansion about D=4. We find a new stable fixed point, that controls long-scale properties of nematic elastomer membranes. It is characterized by singular in-plane elastic moduli that vanish as a power-law eta_lambda=4-D of a relevant inverse length scale (e.g., wavevector) and a finite bending rigidity. Our predictions are asymptotically exact near 4 dimensions.Comment: 18 pages, 4 eps figures. submitted to PR

    Fano resonance in electronic transport through a quantum wire with a side-coupled quantum dot: X-boson treatment

    Full text link
    The transport through a quantum wire with a side coupled quantum dot is studied. We use the X-boson treatment for the Anderson single impurity model in the limit of U=U=\infty . The conductance presents a minimum for values of T=0 in the crossover from mixed-valence to Kondo regime due to a destructive interference between the ballistic channel associated with the quantum wire and the quantum dot channel. We obtain the experimentally studied Fano behavior of the resonance. The conductance as a function of temperature exhibits a logarithmic and universal behavior, that agrees with recent experimental results.Comment: 6 pages, 10 eps figs., revtex

    Scalar hairy black holes and solitons in asymptotically flat spacetimes

    Get PDF
    A numerical analysis shows that a class of scalar-tensor theories of gravity with a scalar field minimally and nonminimally coupled to the curvature allows static and spherically symmetric black hole solutions with scalar-field hair in asymptotically flat spacetimes. In the limit when the horizon radius of the black hole tends to zero, regular scalar solitons are found. The asymptotically flat solutions are obtained provided that the scalar potential V(ϕ)V(\phi) of the theory is not positive semidefinite and such that its local minimum is also a zero of the potential, the scalar field settling asymptotically at that minimum. The configurations for the minimal coupling case, although unstable under spherically symmetric linear perturbations, are regular and thus can serve as counterexamples to the no-scalar-hair conjecture. For the nonminimal coupling case, the stability will be analyzed in a forthcoming paper.Comment: 7 pages, 10 postscript figures, file tex, new postscript figs. and references added, stability analysis revisite

    Multi-Channel Kondo Necklace

    Full text link
    A multi--channel generalization of Doniach's Kondo necklace model is formulated, and its phase diagram studied in the mean--field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The NN conduction electron channels are represented by NN sets of pseudospins \vt_{j}, j=1,...,Nj=1, ... , N, which are all antiferromagnetically coupled to a periodic array of |\vs|=1/2 spins. Exploiting permutation symmetry in the channel index jj allows us to write down the self--consistency equation for general NN. For N>2N>2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi--channel problem is discussed.Comment: 29 pages (2 figures upon request from [email protected]), LATEX, submitted for publicatio

    Transport in Coupled Quantum Dots: Kondo Effect Versus Anti-Ferromagnetic Correlation

    Full text link
    The interplay between the Kondo effect and the inter-dot magnetic interaction in a coupled-dot system is studied. An exact result for the transport properties at zero temperature is obtained by diagonalizing a cluster, composed by the double-dot and its vicinity, which is connected to leads. It is shown that the system goes continuously from the Kondo regime to an anti-ferromagnetic state as the inter-dot interaction is increased. The conductance, the charge at the dots and the spin-spin correlation are obtained as a function of the gate potential.Comment: 4 pages, 3 postscript figures. Submitted to PR

    Kondo effect in coupled quantum dots: a Non-crossing approximation study

    Full text link
    The out-of-equilibrium transport properties of a double quantum dot system in the Kondo regime are studied theoretically by means of a two-impurity Anderson Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in slave-boson language, is solved by means of a generalization of the non-crossing approximation (NCA) to the present problem. We provide benchmark calculations of the predictions of the NCA for the linear and nonlinear transport properties of coupled quantum dots in the Kondo regime. We give a series of predictions that can be observed experimentally in linear and nonlinear transport measurements through coupled quantum dots. Importantly, it is demonstrated that measurements of the differential conductance G=dI/dV{\cal G}=dI/dV, for the appropriate values of voltages and inter-dot tunneling couplings, can give a direct observation of the coherent superposition between the many-body Kondo states of each dot. This coherence can be also detected in the linear transport through the system: the curve linear conductance vs temperature is non-monotonic, with a maximum at a temperature TT^* characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure

    Non-linear response of a Kondo system: Perturbation approach to the time dependent Anderson impurity model

    Full text link
    Nonlinear tunneling current through a quantum dot (an Anderson impurity system) subject to both constant and alternating electric fields is studied in the Kondo regime. A systematic diagram technique is developed for perturbation study of the current in physical systems out of equilibrium governed by time - dependent Hamiltonians of the Anderson and the Kondo models. The ensuing calculations prove to be too complicated for the Anderson model, and hence, a mapping on an effective Kondo problem is called for. This is achieved by constructing a time - dependent version of the Schrieffer - Wolff transformation. Perturbation expansion of the current is then carried out up to third order in the Kondo coupling J yielding a set of remarkably simple analytical expressions for the current. The zero - bias anomaly of the direct current differential conductance is shown to be suppressed by the alternating field while side peaks develop at finite source - drain voltage. Both the direct component and the first harmonics of the time - dependent response are equally enhanced due to the Kondo effect, while amplitudes of higher harmonics are shown to be relatively small. A zero alternating bias anomaly is found in the alternating current differential conductance, that is, it peaks around zero alternating bias. This peak is suppressed by the constant bias. No side peaks show up in the differential alternating - conductance but their counterpart is found in the derivative of the alternating current with respect to the direct bias. The results pertaining to nonlinear response are shown to be valid also below the Kondo temperature.Comment: 55 latex pages 11 ps figure
    corecore