36,852 research outputs found

    Narrow band microwave radiation from a biased single-Cooper-pair transistor

    Full text link
    We show that a single-Cooper-pair transistor (SCPT) electrometer emits narrow-band microwave radiation when biased in its sub-gap region. Photo activation of quasiparticle tunneling in a nearby SCPT is used to spectroscopically detect this radiation, in a configuration that closely mimics a qubit-electrometer integrated circuit. We identify emission lines due to Josephson radiation and radiative transport processes in the electrometer, and argue that a dissipative superconducting electrometer can severely disrupt the system it attempts to measure.Comment: 4 pages, 3 figure

    Ultra-high-frequency piecewise-linear chaos using delayed feedback loops

    Full text link
    We report on an ultra-high-frequency (> 1 GHz), piecewise-linear chaotic system designed from low-cost, commercially available electronic components. The system is composed of two electronic time-delayed feedback loops: A primary analog loop with a variable gain that produces multi-mode oscillations centered around 2 GHz and a secondary loop that switches the variable gain between two different values by means of a digital-like signal. We demonstrate experimentally and numerically that such an approach allows for the simultaneous generation of analog and digital chaos, where the digital chaos can be used to partition the system's attractor, forming the foundation for a symbolic dynamics with potential applications in noise-resilient communications and radar

    Constraints On Porosity And Mass Loss In O-Star Winds From The Modeling Of X-Ray Emission Line Profile Shapes

    Get PDF
    We fit X-ray emission line profiles in high resolution XMM-Newton and Chandra grating spectra of the early O supergiant zeta Pup with models that include the effects of porosity in the stellar wind. We explore the effects of porosity due to both spherical and flattened clumps. We find that porosity models with flattened clumps oriented parallel to the photosphere provide poor fits to observed line shapes. However, porosity models with isotropic clumps can provide acceptable fits to observed line shapes, but only if the porosity effect is moderate. We quantify the degeneracy between porosity effects from isotropic clumps and the mass-loss rate inferred from the X-ray line shapes, and we show that only modest increases in the mass-loss rate (less than or similar to 40%) are allowed if moderate porosity effects (h(infinity) less than or similar to R-*) are assumed to be important. Large porosity lengths, and thus strong porosity effects, are ruled out regardless of assumptions about clump shape. Thus, X-ray mass-loss rate estimates are relatively insensitive to both optically thin and optically thick clumping. This supports the use of X-ray spectroscopy as a mass-loss rate calibration for bright, nearby O stars

    First-principles thermal equation of state and thermoelasticity of hcp Fe at high pressures

    Full text link
    We investigate the equation of state and elastic properties of hcp iron at high pressures and high temperatures using first principles linear response linear-muffin-tin-orbital method in the generalized-gradient approximation. We calculate the Helmholtz free energy as a function of volume, temperature, and volume-conserving strains, including the electronic excitation contributions from band structures and lattice vibrational contributions from quasi-harmonic lattice dynamics. We perform detailed investigations on the behavior of elastic moduli and equation of state properties as functions of temperature and pressure, including the pressure-volume equation of state, bulk modulus, the thermal expansion coefficient, the Gruneisen ratio, and the shock Hugoniot. Detailed comparison has been made with available experimental measurements and theoretical predictions.Comment: 33 pages, 12 figure

    General limit to non-destructive optical detection of atoms

    Full text link
    We demonstrate that there is a fundamental limit to the sensitivity of phase-based detection of atoms with light for a given maximum level of allowable spontaneous emission. This is a generalisation of previous results for two-level and three-level atoms. The limit is due to an upper bound on the phase shift that can be imparted on a laser beam for a given excited state population. Specifially, we show that no single-pass optical technique using classical light, based on any number of lasers or coherences between any number of levels, can exceed the limit imposed by the two-level atom. This puts significant restrictions on potential non-destructive optical measurement schemes.Comment: 7 pages, 1 figur
    • …
    corecore