2 research outputs found

    Effects of the coronary artery disease associated LPA and 9p21 loci on risk of aortic valve stenosis

    No full text
    BACKGROUND: Aortic valve stenosis (AVS) and coronary artery disease (CAD) have a significant genetic contribution and commonly co-exist. To compare and contrast genetic determinants of the two diseases, we investigated associations of the LPA and 9p21 loci, i.e. the two strongest CAD risk loci, with risk of AVS. METHODS: We genotyped the CAD-associated variants at the LPA (rs10455872) and 9p21 loci (rs1333049) in the GeneCAST (Genetics of Calcific Aortic STenosis) Consortium and conducted a meta-analysis for their association with AVS. Cases and controls were stratified by CAD status. External validation of findings was undertaken in five cohorts including 7880 cases and 851,152 controls. RESULTS: In the meta-analysis including 4651 cases and 8231 controls the CAD-associated allele at the LPA locus was associated with increased risk of AVS (OR 1.37; 95%CI 1.24-1.52, p = 6.9 × 10-10) with a larger effect size in those without CAD (OR 1.53; 95%CI 1.31-1.79) compared to those with CAD (OR 1.27; 95%CI 1.12-1.45). The CAD-associated allele at 9p21 was associated with a trend towards lower risk of AVS (OR 0.93; 95%CI 0.88-0.99, p = 0.014). External validation confirmed the association of the LPA risk allele with risk of AVS (OR 1.37; 95%CI 1.27-1.47), again with a higher effect size in those without CAD. The small protective effect of the 9p21 CAD risk allele could not be replicated (OR 0.98; 95%CI 0.95-1.02). CONCLUSIONS: Our study confirms the association of the LPA locus with risk of AVS, with a higher effect in those without concomitant CAD. Overall, 9p21 was not associated with AVS

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    No full text
    Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies
    corecore