44 research outputs found

    Ginkgo biloba Responds to Herbivory by Activating Early Signaling and Direct Defenses

    Get PDF
    Background: Ginkgo biloba (Ginkgoaceae) is one of the most ancient living seed plants and is regarded as a living fossil. G. biloba has a broad spectrum of resistance or tolerance to many pathogens and herbivores because of the presence of toxic leaf compounds. Little is known about early and late events occurring in G. biloba upon herbivory. The aim of this study was to assess whether herbivory by the generalist Spodoptera littoralis was able to induce early signaling and direct defense in G. biloba by evaluating early and late responses. Methodology/Principal Findings: Early and late responses in mechanically wounded leaves and in leaves damaged by S. littoralis included plasma transmembrane potential (Vm) variations, time-course changes in both cytosolic calcium concentration ([Ca 2+]cyt) and H2O2 production, the regulation of genes correlated to terpenoid and flavonoid biosynthesis, the induction of direct defense compounds, and the release of volatile organic compounds (VOCs). The results show that G. biloba responded to hebivory with a significant Vm depolarization which was associated to significant increases in both [Ca 2+] cyt and H 2O 2. Several defense genes were regulated by herbivory, including those coding for ROS scavenging enzymes and the synthesis of terpenoids and flavonoids. Metabolomic analyses revealed the herbivore-induced production of several flavonoids and VOCs. Surprisingly, no significant induction by herbivory was found for two of the most characteristic G. biloba classes of bioactive compounds; ginkgolides and bilobalides

    Transcriptomic Signatures of Ash (Fraxinus spp.) Phloem

    Get PDF
    Ash (Fraxinus spp.) is a dominant tree species throughout urban and forested landscapes of North America (NA). The rapid invasion of NA by emerald ash borer (Agrilus planipennis), a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra), green (F. pennsylvannica) and white (F. americana) are highly susceptible, the Asian species Manchurian ash (F. mandshurica) is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem.Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3) revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species.The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future ash breeding programs for marker development

    CRISPR–Cas9-mediated genome editing in apple and grapevine

    No full text
    The CRISPR–Cas9 genome-editing tool and the availability of whole-genome sequences from plant species have revolutionized our ability to introduce targeted mutations into important crop plants, both to explore genetic changes and to introduce new functionalities. Here, we describe protocols adapting the CRISPR–Cas9 system to apple and grapevine plants, using both plasmid-mediated genome editing and the direct delivery of CRISPR–Cas9 ribonucleoproteins (RNPs) to achieve efficient DNA-free targeted mutations in apple and grapevine protoplasts. We provide a stepwise protocol for the design and transfer of CRISPR–Cas9 components to apple and grapevine protoplasts, followed by verification of highly efficient targeted mutagenesis, and regeneration of plants following the plasmid-mediated delivery of components. Our plasmid-mediated procedure and the direct delivery of CRISPR–Cas9 RNPs can both be utilized to modulate traits of interest with high accuracy and efficiency in apple and grapevine, and could be extended to other crop species. The complete protocol employing the direct delivery of CRISPR–Cas9 RNPs takes as little as 2–3 weeks, whereas the plasmid-mediated procedure takes >3 months to regenerate plants and study the mutation
    corecore