3 research outputs found

    The gap in injury mortality rates between urban and rural residents of Hubei province, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Injury is a growing public health concern in China. Injury death rates are often higher in rural areas than in urban areas in general. The objective of this study is to compare the injury mortality rates in urban and rural residents in Hubei Province in central China by age, sex and mechanism of injury.</p> <p>Methods</p> <p>Using data from the Disease Surveillance Points (DSP) system maintained by the Hubei Province Centers for Disease Control and Prevention (CDC) from 2006 to 2008, injury deaths were classified according to the International Classification of Disease-10<sup>th </sup>Revision (ICD-10). Crude and age-adjusted annual mortality rates were calculated for rural and urban residents of Hubei Province.</p> <p>Results</p> <p>The crude and age-adjusted injury death rates were significantly higher for rural residents than for urban residents (crude rate ratio 1.9, 95% confidence interval 1.8-2.0; adjusted rate ratio 2.4, 95% confidence interval 2.3-2.4). The age-adjusted injury death rate for males was 81.6/100,000 in rural areas compared with 37.0/100 000 in urban areas; for females, the respective rates were 57.9/100,000 and 22.4/100 000. Death rates for suicide (32.4 per 100 000 vs 3.9 per 100 000), traffic-related injuries (15.8 per 100 000 vs 9.5 per 100 000), drowning (6.9 per 100 000 vs 2.3 per 100 000) and crushing injuries (2.0 per 100 000 vs 0.7 per 100 000) were significantly higher in rural areas. Overall injury death rates were much higher in persons over 65 years, with significantly higher rates in rural residents compared with urban residents for suicide (279.8 per 100 000 vs 10.7 per 100 000), traffic-related injuries, and drownings in this age group. Death rates for falls, poisoning, and suffocation were similar in the two geographic groups.</p> <p>Conclusions</p> <p>Rates of suicide, traffic-related injury deaths and drownings are demonstrably higher in rural compared with urban locations and should be targeted for injury prevention activity. There is a need for injury prevention policies targeted at elderly residents, especially with regard to suicide prevention in rural areas in Central China.</p

    Antimicrobial resistance (AMR) nanomachines: mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation

    Get PDF
    In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics—the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that trigger and regulate a wide variety of possible resistance mechanisms, we propose that these antimicrobial resistance mechanisms might be considered complex ‘nanomachines’ that drive survival of bacterial cells in antibiotic environments
    corecore