271 research outputs found

    Temporal and spatial variation in the morphology of the brown macroalga Hormosira banksii (Fucales, Phaeophyta)

    Full text link
    Hormosira banksii is a morphologically variable macroalgal species from southeastern and southern Australia, which has been previously categorised into ecoforms according to habitat. This study is by far the largest quantitative evaluation of morphological variation in H. banksii, covering 74 sites from South Australia, Victoria, New South Wales and Tasmania. Morphological features from 505 samples were analysed using principal components analysis, with the patterns identified being statistically assessed with a Monte Carlo permutation test. There was considerable morphological variation between samples taken at several marine (but not estuarine) sites in both 1994 and 1999. However, this variation was not consistent across either morphological features or populations, and presumably represents random fluctuations. Analysis of the entire dataset demonstrated a significant difference between samples growing in marine and estuarine habitats. Further assessment of variation within these two groups revealed some significantly different populations based on geographical locations but not habitat variation. While this study presents strong evidence for two distinct taxa within H. banksii (marine versus estuarine populations), the taxonomic status of this species should not be altered until genetic studies have been conducted. © 2005 by Walter de Gruyter

    Seasonal variations in tree water use and physiology correlate with soil salinity and soil water content in remnant woodlands on saline soils

    Full text link
    © 2016 Elsevier Ltd. Ecophysiological studies of remnant woodlands in saline environments are scarce. We investigated seasonal fluctuations in soil water and salinity together with leaf and branch traits (area-based maximum assimilation (Amax), foliar nitrogen, specific leaf area (SLA) and Huber value (Hv)) and sap velocities of Eucalyptus macrorhyncha at four semi-arid sites in south-eastern Australia. Summer and winter soil salinities (10 cm depth) were 15-35 dS m-1 and 8-10 dS m-1 respectively. Gravimetric soil water content in the upper 20 cm was 2-5% in summer and 7-23% in winter, resulting in a significant inverse correlation between soil water and soil salinity. We found significant correlations between soil conditions and plant traits and function across seasons. Soil water content was significantly correlated with foliar N, SLA, Hv and maximum sap velocity while soil salinity was significantly correlated with Amax, Hv and maximum sap velocity. Correlations indicate co-variation of soil conditions and plant physiology in response to environmental conditions such as solar radiation and vapour pressure deficit (D). E. macrorhyncha tolerates the dual stresses of high salinity and low soil water during summer. While the plants appeared unhealthy, our data show that remnant vegetation can remain functional even in close proximity to saline scalds

    The response of sap flow to pulses of rain in a temperate Australian woodland

    Full text link
    In water-limited systems, pulses of rainfall can trigger a cascade of plant physiological responses. However, the timing and size of the physiological response can vary depending on plant and environmental characteristics, such as rooting depth, plant size, rainfall amount, or antecedent soil moisture. We investigated the influence of pulses of rainfall on the response of sap flow of two dominant evergreen tree species, Eucalyptus crebra (a broadleaf) and Callitris glaucophylla (a needle leaved tree), in a remnant open woodland in eastern Australia. Sap flow data were collected using heat-pulse sensors installed in six trees of each species over a 2 year period which encompassed the tail-end of a widespread drought. Our objectives were to estimate the magnitude that a rainfall pulse had to exceed to increase tree water use (i.e., define the threshold response), and to determine how tree and environmental factors influenced the increase in tree water use following a rainfall pulse. We used data filtering techniques to isolate rainfall pulses, and analysed the resulting data with multivariate statistical analysis. We found that rainfall pulses less than 20 mm did not significantly increase tree water use (P>0.05). Using partial regression analysis to hold all other variables constant, we determined that the size of the rain event (P<0.05, R 2=0.59), antecedent soil moisture (P<0.05, R 2=0.29), and tree size (DBH, cm, P<0.05, R 2=0.15), all significantly affected the response to rainfall. Our results suggest that the conceptual Threshold-Delay model describing physiological responses to rainfall pulses could be modified to include these factors. We further conclude that modelling of stand water use over an annual cycle could be improved by incorporating the T-D behaviour of tree transpiration. © 2007 Springer Science+Business Media B.V

    Long term trends of stand transpiration in a remnant forest during wet and dry years

    Full text link
    Daily and annual rates of stand transpiration in a drought year and a non-drought year are compared in order to understand the adaptive responses of a remnant woodland to drought and predict the effect of land use change. Two methods were used to estimate stand transpiration. In the first, the ratio of sap velocity of a few trees measured for several hundred days to the mean sap velocity of many trees measured during brief sampling periods (generally 6-7 trees for 5 or 6 days), called the Esv method is used to scale temporally from the few intensive study periods. The second method used was the Penman-Monteith (P-M) equation (called the EPM method). Weather variables and soil moisture were used to predict canopy conductance, which in turn was used to predict daily and annual stand transpiration. Comparisons of daily transpiration estimated with the two methods showed larger values for the EPM method during a drought year and smaller values for the EPM when the rainfall was above average. Generally, though, annual estimates of stand transpiration were similar using the two methods. The Esv method produced an estimate of 318 mm (61% of rainfall) in the drought year and 443 mm (42%) in the year having above average rainfall. The EPM method estimated stand transpiration as 379 mm (73%) and 398 mm (37%), respectively, for the two years. Both estimates of annual stand transpiration demonstrated that the remnant forest showed resilience to an extreme and long-term drought. More importantly, the annual estimates showed that in dry years a larger proportion of rainfall was used as transpiration, and groundwater recharge was absent but in years with above average rainfall recharge was significantly increased. Changes in leaf area index were minimal between years and changes in stomatal conductance were the dominant mechanism for adapting to the drought. The remnant forest rapidly responded to increased water availability after the drought through a new flush of leaves and increased stomatal conductance. © 2007 Elsevier B.V. All rights reserved

    Ecosystem services: An ecophysiological examination

    Full text link
    This review aims to discuss ecosystem services, provide illustrative case studies at catchment and local scales and present future research needs. This review discusses the following: (1) Ecosystem services (ES) are those goods and services that are provided by or are attributes of ecosystems that benefit humans. Examples of ES include the timber derived from a forest, the prevention of soil and coastal erosion by vegetation and the amelioration of dryland salinity through prevention of rises in the water table by trees. The provision of ES globally is in decline because of a lack of awareness of the total economic value of ES in the public, policy and political fora. (2) Providing a scientific understanding of the relationships among ecosystem structure, function and provision of ES, plus determining actual economic value of ES, are the central challenges to environmental scientists (including triple-bottom-line economists). (3) Some ES are widely dispersed throughout many different ecosystems. Carbon accumulation in trees and the contribution of biodiversity to ES provision are two examples of highly dispersed attributes common to many ecosystems. In contrast, other ES are best considered within the context of a single defined ecosystem (although they may occur in other ecosystems too). Mangroves as 'nursery' sites for juvenile fish is one example. (4) Examples of catchment-scale and local-scale provision of ES are discussed, along with future research issues for the nexus between ES and environmental sciences. © CSIRO 2005

    Breakdown, scaling and volt-ampere characteristics of low current micro-discharges

    Get PDF
    Abstract We give preliminary results on the breakdown and low current limit of volt-ampere characteristics of simple parallel plate non-equilibrium dc discharges at standard (centimetre size) and micro-discharge conditions. Experiments with micro-discharges are reported attempting to establish the maintenance of E/N, pd and j/p 2 scalings at small dimensions down to 20 µm. It was found that it may not be possible to obtain properly the left-hand side of the Paschen curve. The possible causes are numerous but we believe that it is possible that long path prevention techniques do not work at high pressures. Nevertheless, the standard scaling laws seem to be maintained down to these dimensions which are consistent with simulations that predict violation of scaling below 10 µm. Volt-ampere characteristics are also presented and compared with those of the standard size discharges
    corecore