29 research outputs found

    Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study

    Get PDF
    Background: Although pulsed electromagnetic field (PEMF) stimulation may be clinically beneficial during fracture healing and for a wide range of bone disorders, there is still debate on its working mechanism. Mesenchymal stem cells are likely mediators facilitating the observed clinical effects of PEMF. Here, we performed in vitro experiments to investigate the effect of PEMF stimulation on human bone marrow-derived stromal cell (BMSC) metabolism and, specifically, whether PEMF can stimulate their osteogenic differentiation. Methods: BMSCs derived from four different donors were cultured in osteogenic medium, with the PEMF treated group being continuously exposed to a 15 Hz, 1 Gauss EM field, consisting of 5-millisecond bursts with 5-microsecond pulses. On culture day 1, 5, 9, and 14, cells were collected for biochemical analysis (DNA amount, alkaline phosphatase activity, calcium deposition), expression of various osteoblast-relevant genes and activation of extracellular signal-regulated kinase (ERK) signaling. Differences between treated and control groups were analyzed using the Wilcoxon signed rank test, and considered significant when p < 0.05. Results: Biochemical analysis revealed significant, differentiation stage-dependent, PEMF-induced differences: PEMF increased mineralization at day 9 and 14, without altering alkaline phosphatase activity. Cell proliferation, as measured by DNA amounts, was not affected by PEMF until day 14. Here, DNA content stagnated in PEMF treated group, resulting in less DNA compared to control. Quantitative RT-PCR revealed that during early culture, up to day 9, PEMF treatment increased mRNA levels of bone morphogenetic protein 2, transforming growth factor-beta 1, osteoprotegerin, matrix metalloproteinase-1 and-3, osteocalcin, and bone sialoprotein. In contrast, receptor activator of NF-B ligand expression was primarily stimulated on day 14. ERK1/2 phosphorylation was not affected by PEMF stimulation. Conclusions: PEMF exposure of differentiating human BMSCs enhanced mineralization and seemed to induce differentiation at the expense of proliferation. The osteogenic stimulus of PEMF was confirmed by the up-regulation of several osteogenic marker genes in the PEMF treated group, which preceded the deposition of mineral itself. These findings indicate that PEMF can directly stimulate osteoprogenitor cells towards osteogenic differentiation. This supports the theory that PEMF treatment may recruit these cells to facilitate an osteogenic response in vivo. © 2010 Jansen et al; licensee BioMed Central Ltd

    Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma.

    No full text
    Multiple myeloma is a B-cell malignancy characterized by the accumulation of plasma cells in the bone marrow and the development of osteolytic bone disease. The present study demonstrates that myeloma cells express the critical osteoclastogenic factor RANKL (the ligand for receptor activator of NF-kappa B). Injection of 5T2MM myeloma cells into C57BL/KaLwRij mice resulted in the development of bone disease characterized by a significant decrease in cancellous bone volume in the tibial and femoral metaphyses, an increase in osteoclast formation, and radiologic evidence of osteolytic bone lesions. Dual-energy x-ray absorptiometry demonstrated a decrease in bone mineral density (BMD) at each of these sites. Treatment of mice with established myeloma with recombinant osteoprotegerin (OPG) protein, the soluble decoy receptor for RANKL, prevented the development of lytic bone lesions. OPG treatment was associated with preservation of cancellous bone volume and inhibition of osteoclast formation. OPG also promoted an increase in femoral, tibial, and vertebral BMD. These data suggest that the RANKL/RANK/OPG system may play a critical role in the development of osteolytic bone disease in multiple myeloma and that targeting this system may have therapeutic potential

    Live Attenuated B. pertussis BPZE1 Rescues the Immune Functions of Respiratory Syncytial Virus Infected Human Dendritic Cells by Promoting Th1/Th17 Responses

    Get PDF
    Respiratory Syncytial virus (RSV) is the leading cause of acute lower respiratory tract viral infection in young children and a major cause of winter hospitalization. Bordetella pertussis is a common cause of bacterial lung disease, affecting a similar age group. Although vaccines are available for B. pertussis infection, disease rates have recently increased in many countries. We have therefore developed a novel live attenuated B. pertussis strain (BPZE1), which has recently undergone a successful clinical phase I trial. In mice, BPZE1 provides protection against disease caused by respiratory viral challenge. Here, we analyze the effect of BPZE1 on antiviral T cell responses induced by human monocyte-derived dendritic cells (MDDC). We found that BPZE1 influences antiviral immune responses at several levels, enhancing MDDC maturation, IL-12p70 production, and shifting T cell cytokine profile towards a Th1/Th17 pattern. These data were supported by the intracellular signaling analysis. RSV infection of MDDC caused MyD88-independent STAT1 phosphorylation, whereas BPZE1 activated MyD88-dependent signaling pathways; co-infection caused both pathways to be activated. These findings suggest that BPZE1 given during infancy might improve the course and outcome of viral lung disease in addition to providing specific protection against B. pertussis infection
    corecore