17 research outputs found

    The development of intermittent multiphase fluid flow pathways through a porous rock

    Get PDF
    storage and natural gas production. However, due to experimental limitations, it has not been possible to identify why intermittency occurs at subsurface conditions and what the implications are for upscaled flow properties such as relative permeability. We address these questions with observations of nitrogen and brine flowing at steady-state through a carbonate rock. We overcome previous imaging limitations with high-speed (1s resolution), synchrotron-based X-ray micro-computed tomography combined with pressure measurements recorded while controlling fluid flux. We observe that intermittent fluid transport allows the non-wetting phase to flow through a more ramified network of pores, which would not be possible with connected pathway flow alone for the same flow rate. The volume of fluid intermittently fluctuating increases with capillary number, with the corresponding expansion of the flow network minimising the role of inertial forces in controlling flow even as the flow rate increases. Intermittent pathway flow sits energetically between laminar and turbulent through connected pathways. While a more ramified flow network favours lowered relative permeability, intermittency is more dissipative than laminar flow through connected pathways, and the relative permeability remains unchanged for low capillary numbers where the pore geometry controls the location of intermittency. However, as the capillary number increases further, the role of pore structure in controlling intermittency decreases which corresponds to an increase in relative permeability. These observations can serve as the basis of a model for the causal links between intermittent fluid flow, fluid distribution throughout the pore space, and the upscaled manifestation in relative permeability

    Quantifying Microstructural Evolution in Moving Magma

    Get PDF
    Many of the grand challenges in volcanic and magmatic research are focused on understanding the dynamics of highly heterogeneous systems and the critical conditions that enable magmas to move or eruptions to initiate. From the formation and development of magma reservoirs, through propagation and arrest of magma, to the conditions in the conduit, gas escape, eruption dynamics, and beyond into the environmental impacts of that eruption, we are trying to define how processes occur, their rates and timings, and their causes and consequences. However, we are usually unable to observe the processes directly. Here we give a short synopsis of the new capabilities and highlight the potential insights that in situ observation can provide. We present the XRheo and Pele furnace experimental apparatus and analytical toolkit for the in situ X-ray tomography-based quantification of magmatic microstructural evolution during rheological testing. We present the first 3D data showing the evolving textural heterogeneity within a shearing magma, highlighting the dynamic changes to microstructure that occur from the initiation of shear, and the variability of the microstructural response to that shear as deformation progresses. The particular shear experiments highlighted here focus on the effect of shear on bubble coalescence with a view to shedding light on both magma transport and fragmentation processes. The XRheo system is intended to help us understand the microstructural controls on the complex and non-Newtonian evolution of magma rheology, and is therefore used to elucidate the many mobilization, transport, and eruption phenomena controlled by the rheological evolution of a multi-phase magmatic flows. The detailed, in situ characterization of sample textures presented here therefore represents the opening of a new field for the accurate parameterization of dynamic microstructural control on rheological behavior

    Redescription of the Planthopper Bursinia genei (Dufour, 1849), with a new record from Greece (Hemiptera: Fulgoromorpha: Dictyopharidae)

    No full text
    Bursinia genei (Dufour, 1849) is the most widespread species of the planthopper subfamily Orgeriinae (Hemiptera: Fulgoromorpha: Dictyopharidae) in Europe, found from the Iberian Peninsula to the Western Balkans. However, its diagnostically important genitalia and biology have been insufficiently described. We employ state-of-the-art synchrotron X-ray microtomography and photomicrography to re-describe B. genei, and to study the morphology of both its sexes in unprecedented detail. By examining specimens from across the distribution of B. genei, we find that they probably belong to a single, broadly distributed morphospecies. Our morphological examination allowed us to make inferences on its jumping mechanism and capacity for vibrational communication. We also record B. genei for the first time from Greece, further extending the range of this elusive species. Detailed information on the habitat of B. genei is also provided

    The pregenital abdomen of Enicocephalomorpha and morphological evidence for different modes of communication at the dawn of heteropteran evolution

    No full text
    The internal and external anatomy of the posterior metathoracic region, pregenital abdomen, and associated nervous system of the heteropteran infraorder Enicocephalomorpha are thoroughly described, using an array of state-of-the art techniques. Based on morphology, it is hypothesised which modes of communication these insects use. This study is based primarily on an undescribed species of Cocles Bergroth, 1905 (Enicocephalidae) and another undescribed species of Lomagostus Villiers, 1958 (Aenictopecheidae), but additional representatives of the infraorder are also examined. Our results are compared with the literature on other Heteroptera. The metathoracic scent gland system of Enicocephalomorpha uses the same muscles as that of more derived Heteroptera, although the efferent system is different. The presence of a tergal plate and well-developed longitudinal musculature in the families Enicocephalidae and Aenictopecheidae, as well as a sexually dimorphic set of sclerites and membranes that allow an as yet undetermined type of motion, may indicate the presence of vibrational signaling in the infraorder, although experimental confirmation is required. Our findings raise new research questions regarding heteropteran functional morphology and communication

    Redescription of the Planthopper Bursinia genei (Dufour, 1849), with a new record from Greece (Hemiptera: Fulgoromorpha: Dictyopharidae)

    No full text
    Bursinia genei (Dufour, 1849) is the most widespread species of the planthopper subfamily Orgeriinae (Hemiptera: Fulgoromorpha: Dictyopharidae) in Europe, found from the Iberian Peninsula to the Western Balkans. However, its diagnostically important genitalia and biology have been insufficiently described. We employ state-of-the-art synchrotron X-ray microtomography and photomicrography to re-describe B. genei, and to study the morphology of both its sexes in unprecedented detail. By examining specimens from across the distribution of B. genei, we find that they probably belong to a single, broadly distributed morphospecies. Our morphological examination allowed us to make inferences on its jumping mechanism and capacity for vibrational communication. We also record B. genei for the first time from Greece, further extending the range of this elusive species. Detailed information on the habitat of B. genei is also provided

    The pregenital abdomen of Enicocephalomorpha and morphological evidence for different modes of communication at the dawn of heteropteran evolution

    No full text
    The internal and external anatomy of the posterior metathoracic region, pregenital abdomen, and associated nervous system of the heteropteran infraorder Enicocephalomorpha are thoroughly described, using an array of state-of-the art techniques. Based on morphology, it is hypothesised which modes of communication these insects use. This study is based primarily on an undescribed species of Cocles Bergroth, 1905 (Enicocephalidae) and another undescribed species of Lomagostus Villiers, 1958 (Aenictopecheidae), but additional representatives of the infraorder are also examined. Our results are compared with the literature on other Heteroptera. The metathoracic scent gland system of Enicocephalomorpha uses the same muscles as that of more derived Heteroptera, although the efferent system is different. The presence of a tergal plate and well-developed longitudinal musculature in the families Enicocephalidae and Aenictopecheidae, as well as a sexually dimorphic set of sclerites and membranes that allow an as yet undetermined type of motion, may indicate the presence of vibrational signaling in the infraorder, although experimental confirmation is required. Our findings raise new research questions regarding heteropteran functional morphology and communication

    Light adaptation mechanisms in the eye of the fiddler crab Afruca tangeri

    No full text
    A great diversity of adaptations is found among animals with compound eyes and even closely related taxa can show variation in their light‐adaptation strategies. A prime example of a visual system evolved to function in specific light environments is the fiddler crab, used widely as a model to research aspects of crustacean vision and neural pathways. However, questions remain regarding how their eyes respond to the changes in brightness spanning many orders of magnitude, associated with their habitat and ecology. The fiddler crab Afruca tangeri forages at low tide on tropical and semi‐tropical mudflats, under bright sunlight and on moonless nights, suggesting that their eyes undergo effective light adaptation. Using synchrotron X‐ray tomography, light and transmission electron microscopy and in vivo ophthalmoscopy, we describe the ultrastructural changes in the eye between day and night. Dark adaptation at dusk triggered extensive widening of the rhabdoms and crystalline cone tips. This doubled the ommatidial acceptance angles and increased microvillar surface area for light capture in the rhabdom, theoretically boosting optical sensitivity 7.4 times. During daytime, only partial dark‐adaptation was achieved and rhabdoms remained narrow, indicating strong circadian control on the process. Bright light did not evoke changes in screening pigment distributions, suggesting a structural inability to adapt rapidly to the light level fluctuations frequently experienced when entering their burrow to escape predators. This should enable fiddler crabs to shelter for several minutes without undergoing significant dark‐adaptation, their vision remaining effectively adapted for predator detection when surfacing again in bright light
    corecore