36 research outputs found

    Angiographic outcome of coronary artery bypass grafts: Radial Artery Database International Alliance

    Get PDF
    BACKGROUND: We used a large patient-level dataset including six angiographic randomized trials (RCTs) on coronary artery bypass conduits to explore incidence and determinants of coronary graft failure. METHODS: Patient-level angiographic data of six RCTs comparing long-term outcomes of the radial artery and other conduits were joined. Primary outcome was graft occlusion at maximum follow-up. The analysis was divided as follows: 1) left anterior descending coronary (LAD) distribution, 2) non-LAD distribution (circumflex and right coronary artery). To identify predictors of graft occlusion, mixed model multivariable Cox regression including all baseline characteristics with stratification by individual trials was used. RESULTS: 1091 patients and 2281 grafts were included (921 left internal mammary arteries, 74 right internal mammary arteries, 710 radial artery and 576 saphenous veins; all left internal mammary arteries were used on the LAD, the other conduits were used on the non-LAD distribution; mean angiographic follow up: 65±29 months). Occlusion rate was 2.3%, 13.5%, 9.4%, 17.5% for the left internal mammary arteries, right internal mammary arteries, radial artery and saphenous veins, respectively. At multivariable analysis type of conduit used, age, female gender, left ventricular ejection fraction<50% and use of the Y graft were significantly associated with graft occlusion in the non-LAD distribution. CONCLUSIONS: Our analyses showed that failure of the left internal mammary arteries to LAD bypass is a very uncommon event. For the non-LAD distribution, the non-use of radial artery, age, female gender, left ventricular ejection fraction<50% and use of the Y graft configuration were significantly associated with mid-term graft failure

    Evaluation of preoperative intra-aortic balloon pump in coronary patients with severe left ventricular dysfunction undergoing OPCAB surgery: early and mid-term outcomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of the present study was to evaluate the safety and the cost-effectiveness of using preoperative IABP as support compared with postoperative IABP treatment in coronary patients with severe left ventricular dysfunction (SLVD) who is undergoing off-pump coronary artery bypass surgery (OPCAB), including early outcomes, hospital mortality and morbidity, and mid-term follow-up outcomes.</p> <p>Methods</p> <p>Between March 2000 and December 2008, we prospectively and randomly studied the insertion of preoperative IABP in 115 (7.4%) and postoperative IABP in 106 (6.8%) of the 1560 consecutive patients. Group A is preoperative IABP therapy. Group B is postoperative IABP therapy.</p> <p>Results</p> <p>There was no significant difference in the number of grafts used between the two groups. Completeness of revascularization did not differ between the two groups. The statistically significant difference was hospital mortality (2.6% in group A vs. 3.8% in group B) (<it>p </it>< 0.05). And there was significant reduction in postoperative low cardiac output, malignant arrhythmia, acute renal failure and length of stay in ICU in group A, compared with group B (<it>p </it>< 0.05). In the two groups, six-, 12-, 24- and 48-month survival rates were similar. In the study the degree of improvement in angina and quality of life did not differ significantly between the two groups.</p> <p>Conclusion</p> <p>The use of preoperative IABP in SLVD patients undergoing OPCAB is of safety and effectiveness. The combined use of preoperative IABP and OPCAB allows complete revascularization in SLVD patients with an important reduction in operative mortality and excellent mid-term results.</p

    Mechanisms of pulmonary dysfunction after on-pump and off-pump cardiac surgery: a prospective cohort study

    Get PDF
    BACKGROUND: Pulmonary dysfunction following cardiac surgery is believed to be caused, at least in part, by a lung vascular injury and/or atelectasis following cardiopulmonary bypass (CPB) perfusion and collapse of non-ventilated lungs. METHODS: To test this hypothesis, we studied the postoperative pulmonary leak index (PLI) for (67)Ga-transferrin and (transpulmonary) extravascular lung water (EVLW) in consecutive patients undergoing on-pump (n = 31) and off-pump (n = 8) cardiac surgery. We also studied transfusion history, radiographs, ventilatory and gas exchange variables. RESULTS: The postoperative PLI and EVLW were elevated above normal in 42 and 29% after on-pump surgery and 63 and 37% after off-pump surgery, respectively (ns). Transfusion of red blood cell (RBC) concentrates, PLI, EVLW, occurrence of atelectasis, ventilatory variables and duration of mechanical ventilation did not differ between groups, whereas patients with atelectasis had higher venous admixture and airway pressures than patients without atelectasis (P = 0.037 and 0.049). The PLI related to number of RBC concentrates infused (P = 0.025). CONCLUSION: The lung vascular injury in about half of patients after cardiac surgery is not caused by CPB perfusion but by trauma necessitating RBC transfusion, so that off-pump surgery may not afford a benefit in this respect. However, atelectasis rather than lung vascular injury is a major determinant of postoperative pulmonary dysfunction, irrespective of CPB perfusion

    Transcriptomic alterations in the heart of non-obese type 2 diabetic Goto-Kakizaki rats

    Get PDF
    BACKGROUND: There is a spectacular rise in the global prevalence of type 2 diabetes mellitus (T2DM) due to the worldwide obesity epidemic. However, a significant proportion of T2DM patients are non-obese and they also have an increased risk of cardiovascular diseases. As the Goto-Kakizaki (GK) rat is a well-known model of non-obese T2DM, the goal of this study was to investigate the effect of non-obese T2DM on cardiac alterations of the transcriptome in GK rats. METHODS: Fasting blood glucose, serum insulin and cholesterol levels were measured at 7, 11, and 15 weeks of age in male GK and control rats. Oral glucose tolerance test and pancreatic insulin level measurements were performed at 11 weeks of age. At week 15, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41,012 genes, and then expression of selected genes was confirmed by qRT-PCR. Gene ontology and protein-protein network analyses were performed to demonstrate potentially characteristic gene alterations and key genes in non-obese T2DM. RESULTS: Fasting blood glucose, serum insulin and cholesterol levels were significantly increased, glucose tolerance and insulin sensitivity were significantly impaired in GK rats as compared to controls. In hearts of GK rats, 204 genes showed significant up-regulation and 303 genes showed down-regulation as compared to controls according to microarray analysis. Genes with significantly altered expression in the heart due to non-obese T2DM includes functional clusters of metabolism (e.g. Cyp2e1, Akr1b10), signal transduction (e.g. Dpp4, Stat3), receptors and ion channels (e.g. Sln, Chrng), membrane and structural proteins (e.g. Tnni1, Mylk2, Col8a1, Adam33), cell growth and differentiation (e.g. Gpc3, Jund), immune response (e.g. C3, C4a), and others (e.g. Lrp8, Msln, Klkc1, Epn3). Gene ontology analysis revealed several significantly enriched functional inter-relationships between genes influenced by non-obese T2DM. Protein-protein interaction analysis demonstrated that Stat is a potential key gene influenced by non-obese T2DM. CONCLUSIONS: Non-obese T2DM alters cardiac gene expression profile. The altered genes may be involved in the development of cardiac pathologies and could be potential therapeutic targets in non-obese T2DM

    Strategies to prevent intraoperative lung injury during cardiopulmonary bypass

    Get PDF
    During open heart surgery the influence of a series of factors such as cardiopulmonary bypass (CPB), hypothermia, operation and anaesthesia, as well as medication and transfusion can cause a diffuse trauma in the lungs. This injury leads mostly to a postoperative interstitial pulmonary oedema and abnormal gas exchange. Substantial improvements in all of the above mentioned factors may lead to a better lung function postoperatively. By avoiding CPB, reducing its time, or by minimizing the extracorporeal surface area with the use of miniaturized circuits of CPB, beneficial effects on lung function are reported. In addition, replacement of circuit surface with biocompatible surfaces like heparin-coated, and material-independent sources of blood activation, a better postoperative lung function is observed. Meticulous myocardial protection by using hypothermia and cardioplegia methods during ischemia and reperfusion remain one of the cornerstones of postoperative lung function. The partial restoration of pulmonary artery perfusion during CPB possibly contributes to prevent pulmonary ischemia and lung dysfunction. Using medication such as corticosteroids and aprotinin, which protect the lungs during CPB, and leukocyte depletion filters for operations expected to exceed 90 minutes in CPB-time appear to be protective against the toxic impact of CPB in the lungs. The newer methods of ultrafiltration used to scavenge pro-inflammatory factors seem to be protective for the lung function. In a similar way, reducing the use of cardiotomy suction device, as well as the contact-time between free blood and pericardium, it is expected that the postoperative lung function will be improved

    Protein disulphide isomerase-assisted functionalization of proteinaceous substrates

    Get PDF
    Protein disulphide isomerase (PDI) is an enzyme that catalyzes thiol-disulphide exchange reactions among a broad spectrum of substrates, including proteins and low-molecular thiols and disulphides. As the first protein-folding catalyst reported, the study of PDI has mainly involved the correct folding of several cysteine-containing proteins. Its application on the functionalization of protein-based materials has not been extensively reported. Herein, we review the applications of PDI on the modification of proteinaceous substrates and discuss its future potential. The mechanism involved in PDI functionalization of fibrous protein substrates is discussed in detail. These approaches allow innovative applications in textile dyeing and finishing, medical textiles, controlled drug delivery systems and hair or skin care products.We thank to FCT 'Fundacao para a Ciencia e Tecnologia' (scholarship SFRH/BD/38363/2007) for providing Margarida Fernandes the grant for PhD studies

    Differential Cerebral Cortex Transcriptomes of Baboon Neonates Consuming Moderate and High Docosahexaenoic Acid Formulas

    Get PDF
    BACKGROUND: Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6) are the major long chain polyunsaturated fatty acids (LCPUFA) of the central nervous system (CNS). These nutrients are present in most infant formulas at modest levels, intended to support visual and neural development. There are no investigations in primates of the biological consequences of dietary DHA at levels above those present in formulas but within normal breastmilk levels. METHODS AND FINDINGS: Twelve baboons were divided into three formula groups: Control, with no DHA-ARA; “L”, LCPUFA, with 0.33%DHA-0.67%ARA; “L3”, LCPUFA, with 1.00%DHA-0.67%ARA. All the samples are from the precentral gyrus of cerebral cortex brain regions. At 12 weeks of age, changes in gene expression were detected in 1,108 of 54,000 probe sets (2.05%), with most showing <2-fold change. Gene ontology analysis assigns them to diverse biological functions, notably lipid metabolism and transport, G-protein and signal transduction, development, visual perception, cytoskeleton, peptidases, stress response, transcription regulation, and 400 transcripts having no defined function. PLA2G6, a phospholipase recently associated with infantile neuroaxonal dystrophy, was downregulated in both LCPUFA groups. ELOVL5, a PUFA elongase, was the only LCPUFA biosynthetic enzyme that was differentially expressed. Mitochondrial fatty acid carrier, CPT2, was among several genes associated with mitochondrial fatty acid oxidation to be downregulated by high DHA, while the mitochondrial proton carrier, UCP2, was upregulated. TIMM8A, also known as deafness/dystonia peptide 1, was among several differentially expressed neural development genes. LUM and TIMP3, associated with corneal structure and age-related macular degeneration, respectively, were among visual perception genes influenced by LCPUFA. TIA1, a silencer of COX2 gene translation, is upregulated by high DHA. Ingenuity pathway analysis identified a highly significant nervous system network, with epidermal growth factor receptor (EGFR) as the outstanding interaction partner. CONCLUSIONS: These data indicate that LCPUFA concentrations within the normal range of human breastmilk induce global changes in gene expression across a wide array of processes, in addition to changes in visual and neural function normally associated with formula LCPUFA
    corecore