25 research outputs found

    TINC — A Method to Dissect Regulatory Complexes at Single-Locus Resolution — Reveals an Extensive Protein Complex at the Nanog Promoter

    Get PDF
    Cellular identity is ultimately dictated by the interaction of transcription factors with regulatory elements (REs) to control gene expression. Advances in epigenome profiling techniques have significantly increased our understanding of cell-specific utilization of REs. However, it remains difficult to dissect the majority of factors that interact with these REs due to the lack of appropriate techniques. Therefore, we developed TINC: TALE-mediated isolation of nuclear chromatin. Using this new method, we interrogated the protein complex formed at the Nanog promoter in embryonic stem cells (ESCs) and identified many known and previously unknown interactors, including RCOR2. Further interrogation of the role of RCOR2 in ESCs revealed its involvement in the repression of lineage genes and the fine-tuning of pluripotency genes. Consequently, using the Nanog promoter as a paradigm, we demonstrated the power of TINC to provide insight into the molecular makeup of specific transcriptional complexes at individual REs as well as into cellular identity control in general.Anja S. Knaupp, Monika Mohenska, Michael R. Larcombe, Ethan Ford, Sue Mei Lim, Kayla Wong, Joseph Chen, Jaber Firas, Cheng Huang, Xiaodong Liu, Trung Nguyen, Yu B.Y. Sun, Melissa L. Holmes, Pratibha Tripathi, Jahnvi Pflueger, Fernando J. Rossello, Jan Schro, der, Kathryn C. Davidson, Christian M. Nefzger, Partha P. Das, Jody J. Haigh, Ryan Lister, Ralf B. Schittenhelm, and Jose M. Pol

    Epidemiology and etiology of Parkinson’s disease: a review of the evidence

    Full text link

    Transient and Permanent Reconfiguration of Chromatin and Transcription Factor Occupancy Drive Reprogramming

    No full text
    Somatic cell reprogramming into induced pluripotent stem cells (iPSCs) induces changes in genome architecture reflective of the embryonic stem cell (ESC) state. However, only a small minority of cells typically transition to pluripotency, which has limited our understanding of the process. Here, we characterize the DNA regulatory landscape during reprogramming by time-course profiling of isolated sub-populations of intermediates poised to become iPSCs. Widespread reconfiguration of chromatin states and transcription factor (TF) occupancy occurs early during reprogramming, and cells that fail to reprogram partially retain their original chromatin states. A second wave of reconfiguration occurs just prior to pluripotency acquisition, where a majority of early changes revert to the somatic cell state and many of the changes that define the pluripotent state become established. Our comprehensive characterization of reprogramming-associated molecular changes broadens our understanding of this process and sheds light on how TFs access and change the chromatin during cell-fate transitions

    Propagation and maintenance of mouse embryonic stem cells

    No full text
    Mouse embryonic stem cells (mESCs) are pluripotent cells derived from preimplantation embryos that have the capacity to self-renew indefinitely in vitro. mESCs are an indispensable tool for studying cellular differentiation in vitro, generating disease in a dish models, and have been used extensively for the generation of transgenic animals. Therefore, maintaining their pluripotent state, even after extended culture, is crucial for their utility. Herein, we describe in detail a protocol for the culture of mESCs in the presence of fetal calf serum (FCS), leukemia inhibitory factor (LIF), and a layer of irradiated mouse embryonic fibroblasts (iMEFs). This culture system reliably sustains mESC pluripotency and self-renewal capacity, allowing their use in a wide range of experimental settings

    New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells

    Get PDF
    The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterized monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells 2017;35:626-640

    Production of high-titer lentiviral particles for stable genetic modification of mammalian cells

    No full text
    Lentiviral gene transfer technologies exploit the natural efficiency of viral transduction to integrate exogenous genes into mammalian cells. This provides a simple research tool for inducing transgene expression or endogenous gene knockdown in both dividing and nondividing cells. This chapter describes an improved protocol for polyethylenimine (PEI)-mediated multi-plasmid transfection and polyethylene glycol (PEG) precipitation to generate and concentrate lentiviral vectors

    Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes

    No full text
    Gut dysbiosis might underlie the pathogenesis of type 1 diabetes. In mice of the non-obese diabetic (NOD) strain, we found that key features of disease correlated inversely with blood and fecal concentrations of the microbial metabolites acetate and butyrate. We therefore fed NOD mice specialized diets designed to release large amounts of acetate or butyrate after bacterial fermentation in the colon. Each diet provided a high degree of protection from diabetes, even when administered after breakdown of immunotolerance. Feeding mice a combined acetate- and butyrate-yielding diet provided complete protection, which suggested that acetate and butyrate might operate through distinct mechanisms. Acetate markedly decreased the frequency of autoreactive T cells in lymphoid tissues, through effects on B cells and their ability to expand populations of autoreactive T cells. A diet containing butyrate boosted the number and function of regulatory T cells, whereas acetate- and butyrate-yielding diets enhanced gut integrity and decreased serum concentration of diabetogenic cytokines such as IL-21. Medicinal foods or metabolites might represent an effective and natural approach for countering the numerous immunological defects that contribute to T cell-dependent autoimmune diseases.Eliana Mariño, James L Richards, Keiran H McLeod, Dragana Stanley, Yu Anne Yap, Jacinta Knight, Craig McKenzie, Jan Kranich, Ana Carolina Oliveira, Fernando J Rossello, Balasubramanian Krishnamurthy, Christian M Nefzger, Laurence Macia, Alison Thorburn, Alan G Baxter, Grant Morahan, Lee H Wong, Jose M Polo, Robert J Moore, Trevor J Lockett, Julie M Clarke, David L Topping, Leonard C Harrison, Charles R Macka

    Transient naive reprogramming corrects hiPS cells functionally and epigenetically

    No full text
    Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function1-8. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. We found that reprogramming-induced epigenetic aberrations emerge midway through primed reprogramming, whereas DNA demethylation begins early in naive reprogramming. Using this knowledge, we developed a transient-naive-treatment (TNT) reprogramming strategy that emulates the embryonic epigenetic reset. We show that the epigenetic memory in hiPS cells is concentrated in cell of origin-dependent repressive chromatin marked by H3K9me3, lamin-B1 and aberrant CpH methylation. TNT reprogramming reconfigures these domains to a hES cell-like state and does not disrupt genomic imprinting. Using an isogenic system, we demonstrate that TNT reprogramming can correct the transposable element overexpression and differential gene expression seen in conventional hiPS cells, and that TNT-reprogrammed hiPS and hES cells show similar differentiation efficiencies. Moreover, TNT reprogramming enhances the differentiation of hiPS cells derived from multiple cell types. Thus, TNT reprogramming corrects epigenetic memory and aberrations, producing hiPS cells that are molecularly and functionally more similar to hES cells than conventional hiPS cells. We foresee TNT reprogramming becoming a new standard for biomedical and therapeutic applications and providing a novel system for studying epigenetic memory.Sam Buckberry ... Jose M. Polo ... Jimmy Breen ... Ning Liu ... et al
    corecore