33 research outputs found

    Gestational age at delivery and special educational need: retrospective cohort study of 407,503 schoolchildren

    Get PDF
    <STRONG>Background</STRONG> Previous studies have demonstrated an association between preterm delivery and increased risk of special educational need (SEN). The aim of our study was to examine the risk of SEN across the full range of gestation. <STRONG>Methods and Findings</STRONG> We conducted a population-based, retrospective study by linking school census data on the 407,503 eligible school-aged children resident in 19 Scottish Local Authority areas (total population 3.8 million) to their routine birth data. SEN was recorded in 17,784 (4.9%) children; 1,565 (8.4%) of those born preterm and 16,219 (4.7%) of those born at term. The risk of SEN increased across the whole range of gestation from 40 to 24 wk: 37–39 wk adjusted odds ratio (OR) 1.16, 95% confidence interval (CI) 1.12–1.20; 33–36 wk adjusted OR 1.53, 95% CI 1.43–1.63; 28–32 wk adjusted OR 2.66, 95% CI 2.38–2.97; 24–27 wk adjusted OR 6.92, 95% CI 5.58–8.58. There was no interaction between elective versus spontaneous delivery. Overall, gestation at delivery accounted for 10% of the adjusted population attributable fraction of SEN. Because of their high frequency, early term deliveries (37–39 wk) accounted for 5.5% of cases of SEN compared with preterm deliveries (<37 wk), which accounted for only 3.6% of cases. <STRONG>Conclusions</STRONG> Gestation at delivery had a strong, dose-dependent relationship with SEN that was apparent across the whole range of gestation. Because early term delivery is more common than preterm delivery, the former accounts for a higher percentage of SEN cases. Our findings have important implications for clinical practice in relation to the timing of elective delivery

    Brain Research to Ameliorate Impaired Neurodevelopment - Home-based Intervention Trial (BRAIN-HIT)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This randomized controlled trial aims to evaluate the effects of an early developmental intervention program on the development of young children in low- and low-middle-income countries who are at risk for neurodevelopmental disability because of birth asphyxia. A group of children without perinatal complications are evaluated in the same protocol to compare the effects of early developmental intervention in healthy infants in the same communities. Birth asphyxia is the leading specific cause of neonatal mortality in low- and low-middle-income countries and is also the main cause of neonatal and long-term morbidity including mental retardation, cerebral palsy, and other neurodevelopmental disorders. Mortality and morbidity from birth asphyxia disproportionately affect more infants in low- and low-middle-income countries, particularly those from the lowest socioeconomic groups. There is evidence that relatively inexpensive programs of early developmental intervention, delivered during home visit by parent trainers, are capable of improving neurodevelopment in infants following brain insult due to birth asphyxia.</p> <p>Methods/Design</p> <p>This trial is a block-randomized controlled trial that has enrolled 174 children with birth asphyxia and 257 without perinatal complications, comparing early developmental intervention plus health and safety counseling to the control intervention receiving health and safety counseling only, in sites in India, Pakistan, and Zambia. The interventions are delivered in home visits every two weeks by parent trainers from 2 weeks after birth until age 36 months. The primary outcome of the trial is cognitive development, and secondary outcomes include social-emotional and motor development. Child, parent, and family characteristics and number of home visits completed are evaluated as moderating factors.</p> <p>Discussion</p> <p>The trial is supervised by a trial steering committee, and an independent data monitoring committee monitors the trial. Findings from this trial have the potential to inform about strategies for reducing neurodevelopmental disabilities in at-risk young children in low and middle income countries.</p> <p>Trial Registration</p> <p>Clinicaltrials.gov NCT00639184</p

    Perinatal and Socioeconomic Risk Factors for Variable and Persistent Cognitive Delay at 24 and 48 Months of Age in a National Sample

    Get PDF
    The objective of this paper is to examine patterns of cognitive delay at 24 and 48 months and quantify the effects of perinatal and sociodemographic risk factors on persistent and variable cognitive delay. Using data from 7,200 children in the Early Childhood Longitudinal Study, Birth Cohort (ECLS-B), multiple logistic regression models identified significant predictors of low cognitive functioning at 24 and 48 months. Additional multiple logistic models predicting cognitive delay at 48 months were estimated separately for children with and without delay at 24 months. Of the nearly 1,000 children delayed at 24 months, 24.2% remained delayed by 48 months; 7.9% of the children not delayed at 24 months exhibited delay at 48 months. Low and very low birthweight increased cognitive delay risk at 24, but not 48 months. Low maternal education had a strongly increasing effect (OR = 2.3 at 24 months, OR = 13.7 at 48 months), as did low family income (OR = 1.4 at 24 months, OR = 7.0 at 48 months). Among children delayed at 24 months, low maternal education predicted delay even more strongly at 48 months (OR = 30.5). Low cognitive functioning is highly dynamic from 24 to 48 months. Although gestational factors including low birthweight increase children’s risk of cognitive delay at 24 months, low maternal education and family income are more prevalent in the pediatric population and are much stronger predictors of both persistent and emerging delay between ages 24 and 48 months

    The consequences of being born small - an adaptive perspective

    No full text
    Absolute definitions of fetal growth are being replaced by definitions that focus on an optimal life-course trajectory. The fetus makes responses to its environment that are determined by the maternal macro-environment, health and physiology. The processes of maternal constraint create significant variations within the normal range of maternal environments and function, and in the fetal environment, which are reflected in different patterns of growth. Deficient nutrient provision may induce immediate adaptation in the form of fetal growth impairment, but will also induce adaptive responses that have evolved for predictive advantage; that is, for a later phase of the life cycle. This latter class of response, probably mediated by epigenetic processes, explains many outcomes of a less-than-optimal pregnancy, including impaired growth, increased visceral obesity, impaired cognitive development, advanced maturation and a greater risk of metabolic and related disease in later life. While these adaptive processes evolved and were appropriate in the environments of prehistory, they are increasingly mismatched with modern environments. Such considerations suggest different approaches to intervention and prevention in population-specific context
    corecore