230 research outputs found

    Characterisation of the bacterial and fungal communities associated with different lesion sizes of Dark Spot Syndrome occurring in the Coral Stephanocoenia intersepta

    Get PDF
    The number and prevalence of coral diseases/syndromes are increasing worldwide. Dark Spot Syndrome (DSS) afflicts numerous coral species and is widespread throughout the Caribbean, yet there are no known causal agents. In this study we aimed to characterise the microbial communities (bacteria and fungi) associated with DSS lesions affecting the coral Stephanocoenia intersepta using nonculture molecular techniques. Bacterial diversity of healthy tissues (H), those in advance of the lesion interface (apparently healthy AH), and three sizes of disease lesions (small, medium, and large) varied significantly (ANOSIM R = 0.052 p,0.001), apart from the medium and large lesions, which were similar in their community profile. Four bacteria fitted into the pattern expected from potential pathogens; namely absent from H, increasing in abundance within AH, and dominant in the lesions themselves. These included ribotypes related to Corynebacterium (KC190237), Acinetobacter (KC190251), Parvularculaceae (KC19027), and Oscillatoria (KC190271). Furthermore, two Vibrio species, a genus including many proposed coral pathogens, dominated the disease lesion and were absent from H and AH tissues, making them candidates as potential pathogens for DSS. In contrast, other members of bacteria from the same genus, such as V. harveyii were present throughout all sample types, supporting previous studies where potential coral pathogens exist in healthy tissues. Fungal diversity varied significantly as well, however the main difference between diseased and healthy tissues was the dominance of one ribotype, closely related to the plant pathogen, Rhytisma acerinum, a known causal agent of tar spot on tree leaves. As the corals’ symbiotic algae have been shown to turn to a darker pigmented state in DSS (giving rise to the syndromes name), the two most likely pathogens are R. acerinum and the bacterium Oscillatoria, which has been identified as the causal agent of the colouration in Black Band Disease, another widespread coral disease

    Colon biopsies for evaluation of acute graft-versus-host disease (A-GVHD) in allogeneic bone marrow transplant patients

    Get PDF
    BACKGROUND: Proper histomorphological interpretation of intestinal acute graft versus host disease (A-GVHD) associated with allogeneic bone marrow transplantation (BMT) is critical for clinical managaement. However, studies methodically evaluating different histomorphological features of A-GVHD are rare. METHODS: Colonic biopsies from 44 allogeneic BMT patients having biopsy-proven cutaneous A-GVHD were compared with colon biopsies from 48 negative controls. RESULTS: A-GVHD showed intra-cryptal apoptosis in 91% and pericryptal apoptosis in adjacent lamina propria in 70% (p < 0.002). Nonspecific apoptosis along the surface epithelium was observed in all groups with comparable frequency. The number of apoptotic cells in mucosa were approximately four times (5.3 per 10 HPF) the negative controls (p < 0.002) in A-GVHD group. 48% of cases with A-GVHD showed decreased number of lymphocytes in lamina propria. Some features, including intraepithelial lymphocytes in surface or crypt epithelium; and neutrophils, eosinophils, and edema in lamina propria, did not demonstrate significant difference in A-GVHD and negative controls. Pericryptal apoptosis, dilated crypts, irregular distribution of crypts, decreased lymphocytes, increased microvessel network, focal fibrosis, presence of muciphages, reactive changes in surface epithelium with mucin depletion, mucosal ulceration, and/or reduced mucosal thickness showed higher association with A-GVHD group. CONCLUSIONS: Intracyptal apoptosis is a reliable indicator of A-GVHD. Its diagnostic significance was improved if intracyptal apoptosis was associated with features which were observed more frequently in A-GVHD group as mentioned above

    A novel nucleo-cytoplasmic hybrid clone formed via androgenesis in polyploid gibel carp

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Unisexual vertebrates have been demonstrated to reproduce by gynogenesis, hybridogenesis, parthenogenesis, or kleptogenesis, however, it is uncertain how the reproduction mode contributes to the clonal diversity. Recently, polyploid gibel carp has been revealed to possess coexisting dual modes of unisexual gynogenesis and sexual reproduction and to have numerous various clones. Using sexual reproduction mating between clone D female and clone A male and subsequent 7 generation multiplying of unisexual gynogenesis, we have created a novel clone strain with more than several hundred millions of individuals. Here, we attempt to identify genetic background of the novel clone and to explore the significant implication for clonal diversity contribution.</p> <p>Methods</p> <p>Several nuclear genome markers and one cytoplasmic marker, the mitochondrial genome sequence, were used to identify the genetic organization of the randomly sampled individuals from different generations of the novel clone.</p> <p>Results</p> <p>Chromosome number, <it>Cot</it>-1 repetitive DNA banded karyotype, microsatellite patterns, AFLP profiles and transferrin alleles uniformly indicated that nuclear genome of the novel clone is identical to that of clone A, and significantly different from that of clone D. However, the cytoplasmic marker, its complete mtDNA genome sequence, is same to that of clone D, and different from that of clone A.</p> <p>Conclusions</p> <p>The present data indicate that the novel clone is a nucleo-cytoplasmic hybrid between the known clones A and D, because it originates from the offspring of gonochoristic sexual reproduction mating between clone D female and clone A male, and contains an entire nuclear genome from the paternal clone A and a mtDNA genome (cytoplasm) from the maternal clone D. It is suggested to arise via androgenesis by a mechanism of ploidy doubling of clone A sperm in clone D ooplasm through inhibiting the first mitotic division. Significantly, the selected nucleo-cytoplasmic hybrid female still maintains its gynogenetic ability. Based on the present and previous findings, we discuss the association of rapid genetic changes and high genetic diversity with various ploidy levels and multiple reproduction modes in several unisexual and sexual complexes of vertebrates and even other invertebrates.</p

    Opportunities to Learn Mathematics Pedagogy and Connect Classroom Learning to Practice: A Study of Future Teachers in the United States and Singapore

    Get PDF
    In this study, we conducted secondary analyses using the TEDS-M database to explore future mathematics specialists teachers’ opportunities to learn (OTL) how to teach mathematics. We applied latent class analysis techniques to differentiate among groups of prospective mathematics specialists with potentially different OTL mathematics pedagogy within the United States and Singapore. Within the United States, three subgroups were identified: (a) Comprehensive OTL, (b) Limited OTL, and (c) OTL Mathematics Pedagogy. Within Singapore, four subgroups were identified: (a) Comprehensive OTL, (b) Limited Opportunities to Connect Classroom Learning with Practice, (c) OTL Mathematics Pedagogy, and (d) Basic OTL. Understanding the opportunities different prospective teachers had to learn from and their experiences with different components of instructional practice in university and practicum settings has implications for teacher preparation programs

    Effect of Anthropogenic Landscape Features on Population Genetic Differentiation of Przewalski's Gazelle: Main Role of Human Settlement

    Get PDF
    Anthropogenic landscapes influence evolutionary processes such as population genetic differentiation, however, not every type of landscape features exert the same effect on a species, hence it is necessary to estimate their relative effect for species management and conservation. Przewalski's gazelle (Procapra przewalskii), which inhabits a human-altered area on Qinghai-Tibet Plateau, is one of the most endangered antelope species in the world. Here, we report a landscape genetic study on Przewalski's gazelle. We used skin and fecal samples of 169 wild gazelles collected from nine populations and thirteen microsatellite markers to assess the genetic effect of anthropogenic landscape features on this species. For comparison, the genetic effect of geographical distance and topography were also evaluated. We found significant genetic differentiation, six genetic groups and restricted dispersal pattern in Przewalski's gazelle. Topography, human settlement and road appear to be responsible for observed genetic differentiation as they were significantly correlated with both genetic distance measures [FST/(1−FST) and F′ST/(1−F′ST)] in Mantel tests. IBD (isolation by distance) was also inferred as a significant factor in Mantel tests when genetic distance was measured as FST/(1−FST). However, using partial Mantel tests, AICc calculations, causal modeling and AMOVA analysis, we found that human settlement was the main factor shaping current genetic differentiation among those tested. Altogether, our results reveal the relative influence of geographical distance, topography and three anthropogenic landscape-type on population genetic differentiation of Przewalski's gazelle and provide useful information for conservation measures on this endangered species
    • …
    corecore