40 research outputs found
A calcium-sensing receptor mutation causing hypocalcemia disrupts a transmembrane salt bridge to activate ÎČ-arrestin-biased signaling
The calcium-sensing receptor (CaSR) is a G protein-coupled receptor (GPCR) that signals through Gq/11and Gi/oto stimulate cytosolic calcium (Ca2+i) and mitogen-activated protein kinase (MAPK) signaling to control extracellular calcium homeostasis. Studies of loss- and gain-of-functionCASRmutations, which cause familial hypocalciuric hypercalcemia type 1 (FHH1) and autosomal dominant hypocalcemia type 1 (ADH1), respectively, have revealed that the CaSR signals in a biased manner. Thus, some mutations associated with FHH1 lead to signaling predominantly through the MAPK pathway, whereas mutations associated with ADH1 preferentially enhance Ca2+iresponses. We report a previously unidentified ADH1-associated R680G CaSR mutation, which led to the identification of a CaSR structural motif that mediates biased signaling. Expressing CaSRR680Gin HEK 293 cells showed that this mutation increased MAPK signaling without altering Ca2+iresponses. Moreover, this gain of function in MAPK activity occurred independently of Gq/11and Gi/oand was mediated instead by a noncanonical pathway involving ÎČ-arrestin proteins. Homology modeling and mutagenesis studies showed that the R680G CaSR mutation selectively enhanced ÎČ-arrestin signaling by disrupting a salt bridge formed between Arg680and Glu767, which are located in CaSR transmembrane domain 3 and extracellular loop 2, respectively. Thus, our results demonstrate CaSR signaling through ÎČ-arrestin and the importance of the Arg680-Glu767salt bridge in mediating signaling bias
Architecture of androgen receptor pathways amplifying glucagon-like peptide-1 insulinotropic action in male pancreatic ÎČ cells
Male mice lacking the androgen receptor (AR) in pancreatic ÎČ cells exhibit blunted glucose-stimulated insulin secretion (GSIS), leading to hyperglycemia. Testosterone activates an extranuclear AR in ÎČ cells to amplify glucagon-like peptide-1 (GLP-1) insulinotropic action. Here, we examined the architecture of AR targets that regulate GLP-1 insulinotropic action in male ÎČ cells. Testosterone cooperates with GLP-1 to enhance cAMP production at the plasma membrane and endosomes via: (1) increased mitochondrial production of CO2, activating the HCO3--sensitive soluble adenylate cyclase; and (2) increased Gαs recruitment to GLP-1 receptor and AR complexes, activating transmembrane adenylate cyclase. Additionally, testosterone enhances GSIS in human islets via a focal adhesion kinase/SRC/phosphatidylinositol 3-kinase/mammalian target of rapamycin complex 2 actin remodeling cascade. We describe the testosterone-stimulated AR interactome, transcriptome, proteome, and metabolome that contribute to these effects. This study identifies AR genomic and non-genomic actions that enhance GLP-1-stimulated insulin exocytosis in male ÎČ cells
The prolactin receptor: Diverse and emerging roles in pathophysiology
This is an open access article under the CC BY-NC-ND. Investigations over two decades have revised understanding of the prolactin hormone. Long thought to be merely a lactogenic hormone, its list of functions has been extended to include: reproduction, islet differentiation, adipocyte control and immune modulation. Prolactin functions by binding cell-surface expressed prolactin receptor, initiating signaling cascades, primarily utilizing Janus kinase-signal transducer and activator of transcription (JAK-STAT). Pathway disruption has been implicated in tumorigenesis, reproductive abnormalities, and diabetes. Prolactin can also be secreted from extrapituitary sources adding complexity to understanding of its physiological functions. This review aims to describe how prolactin exerts its pathophysiological roles by endocrine and autocrine means
Vascular wall regulator of G-protein signalling-1 (RGS-1) is required for angiotensin II-mediated blood pressure control
G-Protein coupled receptors (GPCRs) activate intracellular signalling pathways by coupling to heterotrimeric G-proteins that control many physiological processes including blood pressure homeostasis. The Regulator of G-Protein Signalling-1 (RGS1) controls the magnitude and duration of downstream GPCR signalling by acting as a GTPase-activating protein for specific Gα-proteins. RGS1 has contrasting roles in haematopoietic and non-haematopoietic cells. Rgs1-/-ApoE-/- mice are protected from Angiotensin II (Ang II)-induced aortic aneurysm rupture. Conversely, Ang II treatment increases systolic blood pressure to a greater extent in Rgs1-/-ApoE-/- mice than ApoE-/- mice, independent of its role in myeloid cells. However the precise role of RGS1 in hypertension and vascular-derived cells remains unknown. We determined the effects of Rgs1 deletion on vascular function in ApoE-/- mice. Rgs1 deletion led to enhanced vasoconstriction in aortas and mesenteric arteries from ApoE-/- mice in response to phenylephrine (PE) and U46619 respectively. Rgs1 was shown to have a role in the vasculature, with endothelium-dependent vasodilation being impaired, and endothelium-independent dilatation to SNP being enhanced in Rgs1-/-ApoE-/- mesenteric arteries. To address the downstream signalling pathways in vascular smooth muscle cells (VSMCs) in response to Ang II-stimulation, we assessed pErk1/2, pJNK and pp38 MAPK activation in VSMCs transiently transfected with Rgs1. pErk1/2 signalling but not pJNK and pp38 signalling was impaired in the presence of Rgs1. Furthermore, we demonstrated that the enhanced contractile response to PE in Rgs1-/-ApoE-/- aortas was reduced by a MAPK/Erk (MEK) inhibitor and an L-type voltage gated calcium channel antagonist, suggesting that Erk1/2 signalling and calcium influx are major effectors of Rgs1-mediated vascular contractile responses, respectively. These findings indicate RGS1 is a novel regulator of blood pressure homeostasis and highlight RGS1-controlled signalling pathways in the vasculature that may be new drug development targets for hypertension
Autosomal dominant osteopetrosis associated with renal tubular acidosis is due to a CLCN7 mutation
The aim of this study was to identify the causative mutation in a family with an unusual presentation of autosomal dominant osteopetrosis (OPT), proximal renal tubular acidosis (RTA), renal stones, epilepsy, and blindness, a combination of features not previously reported. We undertook exome sequencing of one affected and one unaffected family member, followed by targeted analysis of known candidate genes to identify the causative mutation. This identified a missense mutation (c.643G>A; p.Gly215Arg) in the gene encoding the chloride/proton antiporter 7 (gene CLCN7, protein CLC-7), which was confirmed by amplification refractory mutation system (ARMS)-PCR, and to be present in the three available patients. CLC-7 mutations are known to cause autosomal dominant OPT type 2, also called Albers-Schonberg disease, which is characterized by osteosclerosis, predominantly of the spine, pelvis and skull base, resulting in bone fragility and fractures. Albers-Schonberg disease is not reported to be associated with RTA, but autosomal recessive OPT type 3 (OPTB3) with RTA is associated with carbonic anhydrase type 2 (CA2) mutations. No mutations were detected in CA2 or any other genes known to cause proximal RTA. Neither CLCN7 nor CA2 mutations have previously been reported to be associated with renal stones or epilepsy. Thus, we identified a CLCN7 mutation in a family with autosomal dominant osteopetrosis, RTA, renal stones, epilepsy, and blindness. © 2016 Wiley Periodicals, Inc
Cinacalcet rectifies hypercalcemia in a patient with familial hypocalciuric hypercalcemia type 2 (FHH2) caused by a germline lossâofâfunction Gα11 mutation
Gâprotein subunit αâ11 (Gα11) couples the calciumâsensing receptor (CaSR) to phospholipase C (PLC)âmediated intracellular calcium (Ca2+i) and mitogenâactivated protein kinase (MAPK) signaling, which in the parathyroid glands and kidneys regulates parathyroid hormone release and urinary calcium excretion, respectively. Heterozygous germline lossâofâfunction Gα11 mutations cause familial hypocalciuric hypercalcemia type 2 (FHH2), for which effective therapies are currently not available. Here, we report a novel heterozygous Gα11 germline mutation, Phe220Ser, which was associated with hypercalcemia in a family with FHH2. Homology modeling showed the wildâtype (WT) Phe220 nonpolar residue to form part of a cluster of hydrophobic residues within a highly conserved cleft region of Gα11, which binds to and activates PLC; and predicted that substitution of Phe220 with the mutant Ser220 polar hydrophilic residue would disrupt PLCâmediated signaling. In vitro studies involving transient transfection of WT and mutant Gα11 proteins into HEK293 cells, which express the CaSR, showed the mutant Ser220 Gα11 protein to impair CaSRâmediated Ca2+i and extracellular signalâregulated kinase 1/2 (ERK) MAPK signaling, consistent with diminished activation of PLC. Furthermore, engineered mutagenesis studies demonstrated that loss of hydrophobicity within the Gα11 cleft region also impaired signaling by PLC. The lossâofâfunction associated with the Ser220 Gα11 mutant was rectified by treatment of cells with cinacalcet, which is a CaSRâpositive allosteric modulator. Furthermore, in vivo administration of cinacalcet to the proband harboring the Phe220Ser Gα11 mutation, normalized serum ionized calcium concentrations. Thus, our studies, which report a novel Gα11 germline mutation (Phe220Ser) in a family with FHH2, reveal the importance of the Gα11 hydrophobic cleft region for CaSRâmediated activation of PLC, and show that allosteric CaSR modulation can rectify the lossâofâfunction Phe220Ser mutation and ameliorate the hypercalcemia associated with FHH2
Familial hypocalciuric hypercalcemia type 1 and autosomal-dominant hypocalcemia type 1: prevalence in a large healthcare population
The calcium-sensing receptor (CaSR) regulates serum calcium concentrations. CASR loss- or gain-of-function mutations cause familial hypocalciuric hypercalcemia type 1 (FHH1) or autosomal-dominant hypocalcemia type 1 (ADH1), respectively, but the population prevalence of FHH1 or ADH1 is unknown. Rare CASR variants were identified in whole-exome sequences from 51,289 de-identified individuals in the DiscovEHR cohort derived from a single US healthcare system. We integrated bioinformatics pathogenicity triage, mean serum Ca concentrations, and mode of inheritance to identify potential FHH1 or ADH1 variants, and we used a Sequence Kernel Association Test (SKAT) to identify rare variant-associated diseases. We identified predicted heterozygous loss-of-function CASR variants (6 different nonsense/frameshift variants and 12 different missense variants) in 38 unrelated individuals, 21 of whom were hypercalcemic. Missense CASR variants were identified in two unrelated hypocalcemic individuals. Functional studies showed that all hypercalcemia-associated missense variants impaired heterologous expression, plasma membrane targeting, and/or signaling, whereas hypocalcemia-associated missense variants increased expression, plasma membrane targeting, and/or signaling. Thus, 38 individuals with a genetic diagnosis of FHH1 and two individuals with a genetic diagnosis of ADH1 were identified in the 51,289 cohort, giving a prevalence in this population of 74.1 per 100,000 for FHH1 and 3.9 per 100,000 for ADH1. SKAT combining all nonsense, frameshift, and missense loss-of-function variants revealed associations with cardiovascular, neurological, and other diseases. In conclusion, FHH1 is a common cause of hypercalcemia, with prevalence similar to that of primary hyperparathyroidism, and is associated with altered disease risks, whereas ADH1 is a major cause of non-surgical hypoparathyroidism
Calcilytic NPSP795 increases plasma calcium and PTH in an autosomal dominant hypocalcemia type 1 mouse model
Calcilytics are calciumâsensing receptor (CaSR) antagonists that reduce the sensitivity of the CaSR to extracellular calcium. Calcilytics have the potential to treat autosomal dominant hypocalcemia type 1 (ADH1), which is caused by germline gainâofâfunction CaSR mutations and leads to symptomatic hypocalcemia, inappropriately low PTH concentrations, and hypercalciuria. To date, only one calcilytic compound, NPSP795, has been evaluated in patients with ADH1: Doses of up to 30âmg per patient have been shown to increase PTH concentrations, but did not significantly alter ionized blood calcium concentrations. The aim of this study was to further investigate NPSP795 for the treatment of ADH1 by undertaking in vitro and in vivo studies involving Nuf mice, which have hypocalcemia in association with a gainâofâfunction CaSR mutation, Leu723Gln. Treatment of HEK293 cells stably expressing the mutant Nuf (Gln723) CaSR with 20nM NPSP795 decreased extracellular Ca2+âmediated intracellular calcium and phosphorylated ERK responses. An in vivo doseâranging study was undertaken by administering a s.c. bolus of NPSP795 at doses ranging from 0 to 30âmg/kg to heterozygous (Casr +/Nuf ) and to homozygous (Casr Nuf/Nuf ) mice, and measuring plasma PTH responses at 30âmin postdose. NPSP795 significantly increased plasma PTH concentrations in a doseâdependent manner with the 30âmg/kg dose causing a maximal (â„10âfold) rise in PTH. To determine whether NPSP795 can rectify the hypocalcemia of Casr +/Nuf and Casr Nuf/Nuf mice, a submaximal dose (25âmg/kg) was administered, and plasma adjustedâcalcium concentrations measured over a 6âhour period. NPSP795 significantly increased plasma adjustedâcalcium in Casr +/Nuf mice from 1.87â±â0.03âmmol/L to 2.16â±â0.06âmmol/L, and in Casr Nuf/Nuf mice from 1.70â±â0.03âmmol/L to 1.89â±â0.05âmmol/L. Our findings show that NPSP795 elicits doseâdependent increases in PTH and ameliorates the hypocalcemia in an ADH1 mouse model. Thus, calcilytics such as NPSP795 represent a potential targeted therapy for ADH1