4,852 research outputs found

    Effects of blood transfusion on exercise capacity in thalassemia major patients

    Get PDF
    Anemia has an important role in exercise performance. However, the direct link between rapid changes of hemoglobin and exercise performance is still unknown.To find out more on this topic, we studied 18 beta-thalassemia major patients free of relevant cardiac dysfunction (age 33.5±7.2 years,males = 10). Patients performed a maximal cardiopulmolmonary exercise test (cycloergometer, personalized ramp protocol, breath-by-breath measurements of expired gases) before and the day after blood transfusion (500 cc of red cell concentrates). After blood transfusion, hemoglobin increased from 10.5±0.8 g/dL to 12.1±1.2 (p<0.001), peak VO2 from 1408 to 1546mL/min (p<0.05), and VO2 at anaerobic threshold from 965 to 1024mL/min (p<0.05). No major changes were observed as regards heart and respiratory rates either at peak exercise or at anaerobic threshold. Similarly, no relevant changes were observed in ventilation efficiency, as evaluated by the ventilation vs. carbon dioxide production relationship, or in O2 delivery to the periphery as analyzed by the VO2 vs. workload relationship. The relationship between hemoglobin and VO2 changes showed, for each g/dL of hemoglobin increase, a VO2 increase = 82.5 mL/min and 35 mL/min, at peak exercise and at anaerobic threshold, respectively. In beta-thalassemia major patients, an acute albeit partial anemia correction by blood transfusion determinates a relevant increase of exercise performance, observed both at peak exercise and at anaerobic threshold

    X-Ray afterglow of SWIFT J1644+57: a Compton echo?

    Get PDF
    postprin

    Origin of thermal and non-thermal hard X-ray emission from the Galactic center

    Get PDF
    Topic: An INTEGRAL View of Compact ObjectsWe analyse new results of CHANDRA and SUZAKU which found a flux of hard X-ray emission from the compact region around Sgr A* (r∌ 100 pc). We propose that this emission is a consequence of a special transient accretion process when a part of captured star obtains an additional angular momentum. As a result a flux of subrelativistic protons is ejected from the Galactic black hole, which heats up the background plasma in the Galactic center up to temperature about 6-10 keV and produces by inverse bremsstrahlung a flux of non-thermal X-ray emission in the energy range above 10 keV.published_or_final_versio

    Ising-like antiferromagnetism on the octahedral sublattice of a cobalt-containing garnet and the potential for quantum criticality

    Get PDF
    In this contribution, we report that CaY2Co2Ge3O12 exhibits an unusual anisotropic and chainlike antiferromagnetic arrangement of spins despite crystallizing in the highly symmetric garnet structure. Using low-temperature powder neutron diffraction and symmetry analysis, we identify a magnetic structure consisting of chainlike motifs oriented along the body diagonals of the cubic unit cell with moments pointing parallel to the chain direction due to the strong Ising character of the Co ions. Antiferromagnetic order sets in below 6 K and exhibits both temperature- and field-induced magnetic transitions at high fields. Combining the results, we present a magnetic phase diagram that suggests CaY2Co2Ge3O12 undergoes a quantum phase transition at low temperatures and moderate fields

    Requirement of JNK1 for endothelial cell injury in atherogenesis

    Get PDF
    AbstractObjectiveThe c-Jun N-terminal kinase (JNK) family regulates fundamental physiological processes including apoptosis and metabolism. Although JNK2 is known to promote foam cell formation during atherosclerosis, the potential role of JNK1 is uncertain. We examined the potential influence of JNK1 and its negative regulator, MAP kinase phosphatase-1 (MKP-1), on endothelial cell (EC) injury and early lesion formation using hypercholesterolemic LDLR−/− mice.Methods and resultsTo assess the function of JNK1 in early atherogenesis, we measured EC apoptosis and lesion formation in LDLR−/− or LDLR−/−/JNK1−/− mice exposed to a high fat diet for 6 weeks. En face staining using antibodies that recognise active, cleaved caspase-3 (apoptosis) or using Sudan IV (lipid deposition) revealed that genetic deletion of JNK1 reduced EC apoptosis and lesion formation in hypercholesterolemic mice. By contrast, although EC apoptosis was enhanced in LDLR−/−/MKP-1−/− mice compared to LDLR−/− mice, lesion formation was unaltered.ConclusionWe conclude that JNK1 is required for EC apoptosis and lipid deposition during early atherogenesis. Thus pharmacological inhibitors of JNK may reduce atherosclerosis by preventing EC injury as well as by influencing foam cell formation

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    Fast, scalable, Bayesian spike identification for multi-electrode arrays

    Get PDF
    We present an algorithm to identify individual neural spikes observed on high-density multi-electrode arrays (MEAs). Our method can distinguish large numbers of distinct neural units, even when spikes overlap, and accounts for intrinsic variability of spikes from each unit. As MEAs grow larger, it is important to find spike-identification methods that are scalable, that is, the computational cost of spike fitting should scale well with the number of units observed. Our algorithm accomplishes this goal, and is fast, because it exploits the spatial locality of each unit and the basic biophysics of extracellular signal propagation. Human intervention is minimized and streamlined via a graphical interface. We illustrate our method on data from a mammalian retina preparation and document its performance on simulated data consisting of spikes added to experimentally measured background noise. The algorithm is highly accurate
    • 

    corecore