62 research outputs found

    Raman micro-spectroscopy can be used to investigate the developmental stage of the mouse oocyte

    Get PDF
    In recent years, the uptake of assisted reproductive techniques such as in vitro fertilisation has risen exponentially. However, there is much that is still not fully understood about the biochemical modifications that take place during the development and maturation of the oocyte. As such, it is essential to further the understanding of how oocyte manipulation during these procedures ultimately affects its developmental potential; yet, there are few methods currently available which are capable of providing a quantitative measure of oocyte quality. Raman spectroscopy enables investigation of the global biochemical profile of intact cells without the need for labelling. Here, Raman spectra were acquired from the ooplasm of mouse oocytes at various stages of development, from late pre-antral follicles, collected after in vitro maturation within their ovarian follicles and from unstimulated and stimulated ovulatory cycles. Using a combination of univariate and multivariate statistical methods, it was found that ooplasm lipid content could be used to discriminate between different stages of oocyte development. Furthermore, the spectral profiles of mature oocytes revealed that oocytes which have developed in vitro are protein-deficient when compared to in vivo grown oocytes. Finally, the ratio of two Raman peak intensities, namely 1605:1447 cm21, used as a proxy for the protein-to-lipid ratio of the ooplasm, was shown to be indicative of the oocyte’s quality. Together, results indicate that Raman spectroscopy may present an alternative analytical tool fo

    Aberrant spindle structures responsible for recurrent human metaphase I oocyte arrest with attempts to induce meiosis artificially

    No full text
    BACKGROUND: In some couples, not all retrieved oocytes mature, even after prolonged in vitro culture. The underlying mechanisms are not known, although ionophore treatment may alleviate metaphase I (MI) arrest in some mouse strains. We attempted to induce first polar body (PB) extrusion and fertilization using assisted oocyte activation (AOA) after ICSI in maturation-resistant human MI oocytes. METHODS: Four ICSI patients are described in this retrospective study. A pilot study tested the calcium ionophore ionomycin (10 mu M) on donated MI oocytes from patients with a normal number of metaphase II (MII) oocytes. Subsequently, ionomycin was used to induce first PB extrusion in two patients showing maturation-resistant MI oocytes. AOA, by calcium injection and ionomycin exposure, was applied when mature oocytes were available. Oocytes were analysed by polarized microscopy and immunostaining. RESULTS: Ionomycin induced the first PB extrusion in MI oocytes from patients with a normal number of retrieved MII oocytes, while extended in vitro culture failed to achieve the MII stage. Similarly, ionomycin induced first PB extrusion in one of two patients with recurrent maturation-resistant MI oocytes. Use of ICSI combined with AOA on MII oocytes matured in vitro or in vivo resulted in failed or abnormal fertilization with no further embryo cleavage potential. Highly abnormal spindle and chromosome configurations were observed in MI maturation-resistant oocytes, in contrast to control MI oocytes. CONCLUSIONS: Ionophore induced first PB extrusion in MI oocytes from patients without maturation arrest but to a lower extent in maturation-resistant MI oocytes. Immunofluorescence staining and confocal analysis revealed, for the first time, highly abnormal spindle/chromosomal structures that may be responsible for this maturation arrest
    • …
    corecore