24 research outputs found

    Aquaporins: important but elusive drug targets.

    Get PDF
    The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators

    X-ray fluorescence imaging of single human cancer cells reveals that the N-heterocyclic ligands of iodinated analogues of ruthenium anticancer drugs remain coordinated after cellular uptake

    No full text
    Analogues of KP1019 containing iodinated indazole ligands were prepared to investigate the biological fate of the Ru-N-heterocycle bond in this class of anticancer agents. The new complexes, 5-iodoindazolium trans-tetrachloridobis(5-iodoindazole)ruthen(III)ate (1) and 5-iodoindazolium trans-tetrachlorido(dimethyl sulfoxide)(5-iodoindazole)ruthen(III)ate (3), were characterized by elemental analysis, mass spectrometry and UV-vis spectrophotometry. Tetramethylammonium salts of these complexes (2 and 4) were synthesized and characterized in a similar manner. Half-maximum inhibitory concentrations of 2 and 4 with regard to A549 cells at 24 h were determined on the basis of the dose-response curves derived from real-time cell adhesion impedance measurements and were shown to be in the same range as those determined for KP1019 and NAMI-A using the same method. X-ray fluorescence imaging of single cultured A549 cells treated with 2 or 4 showed that, in both cases, the distribution of ruthenium and iodine was identical, indicating that the Ru-N bonds in the anionic complexes remained intact after incubation in culture medium and subsequent cellular uptake and processing.Sumy Antony, Jade B. Aitken, Stefan Vogt, Barry Lai, Tracey Brown, Leone Spiccia, Hugh H. Harri
    corecore