52 research outputs found

    Metabolic myopathy presenting with polyarteritis nodosa: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>To the best of our knowledge, we describe for the first time a patient in whom an unusual metabolic myopathy was identified after failure to respond to curative therapy for a systemic vasculitis, polyarteritis nodosa. We hope this report will heighten awareness of common metabolic myopathies that may present later in life. It also speculates on the potential relationship between metabolic myopathy and systemic vasculitis.</p> <p>Case presentation</p> <p>A 78-year-old African-American woman with a two-year history of progressive fatigue and exercise intolerance presented to our facility with new skin lesions and profound muscle weakness. Skin and muscle biopsies demonstrated a medium-sized artery vasculitis consistent with polyarteritis nodosa. Biochemical studies of the muscle revealed diminished cytochrome C oxidase activity (0.78 μmol/minute/g tissue; normal range 1.03 to 3.83 μmol/minute/g tissue), elevated acid maltase activity (23.39 μmol/minute/g tissue; normal range 1.74 to 9.98 μmol/minute/g tissue) and elevated neutral maltase activity (35.89 μmol/minute/g tissue; normal range 4.35 to 16.03 μmol/minute/g tissue). Treatment for polyarteritis nodosa with prednisone and cyclophosphamide resulted in minimal symptomatic improvement. Additional management with a diet low in complex carbohydrates and ubiquinone, creatine, carnitine, folic acid, α-lipoic acid and ribose resulted in dramatic clinical improvement.</p> <p>Conclusions</p> <p>Our patient's initial symptoms of fatigue, exercise intolerance and progressive weakness were likely related to her complex metabolic myopathy involving both the mitochondrial respiratory chain and glycogen storage pathways. Management of our patient required treatment of both the polyarteritis nodosa as well as metabolic myopathy. Metabolic myopathies are common and should be considered in any patient with exercise intolerance. Metabolic myopathies may complicate the management of various disease states.</p

    Primary thromboprophylaxis for cancer patients with central venous catheters – a reappraisal of the evidence

    Get PDF
    Venous thromboembolism (VTE) is responsible for an estimated 25 000 deaths per annum in UK hospital practice. It is well established that many of these deaths could be prevented through the use of appropriate thromboprophylaxis. This issue is of particular relevance in oncology practice, where the risks of VTE and bleeding are both significantly higher than those observed in general medical patients. Cancer patients with in-dwelling central venous catheters (CVCs) are at particularly high risk of developing thrombotic complications. However, the literature has produced conflicting conclusions regarding the efficacy of using routine primary thromboprophylaxis in these patients. Indeed such is the level of confusion around this topic, that the most recent version of the American College of Chest Physicians (ACCP) guidelines published in 2004 actually reversed their previous recommendation (published in 2001). Nevertheless, minidose warfarin continues to be routinely used in many oncology centres in the UK. In this article, we have performed a systematic review of the published literature regarding the efficacy and the risks, associated with using thromboprophylaxis (either minidose warfarin or low-dose LMWH) in cancer patients with CVC. On the basis of this evidence, we conclude that there is no proven role for using such thromboprophylaxis. However, asymptomatic CVC-related venous thrombosis remains common, and further more highly powered studies of better design are needed in order to define whether specific subgroups of cancer patients might benefit from receiving thromboprophylaxis

    Kaposi's Sarcoma Associated Herpes Virus (KSHV) Induced COX-2: A Key Factor in Latency, Inflammation, Angiogenesis, Cell Survival and Invasion

    Get PDF
    Kaposi's sarcoma (KS), an enigmatic endothelial cell vascular neoplasm, is characterized by the proliferation of spindle shaped endothelial cells, inflammatory cytokines (ICs), growth factors (GFs) and angiogenic factors. KSHV is etiologically linked to KS and expresses its latent genes in KS lesion endothelial cells. Primary infection of human micro vascular endothelial cells (HMVEC-d) results in the establishment of latent infection and reprogramming of host genes, and cyclooxygenase-2 (COX-2) is one of the highly up-regulated genes. Our previous study suggested a role for COX-2 in the establishment and maintenance of KSHV latency. Here, we examined the role of COX-2 in the induction of ICs, GFs, angiogenesis and invasive events occurring during KSHV de novo infection of endothelial cells. A significant amount of COX-2 was detected in KS tissue sections. Telomerase-immortalized human umbilical vein endothelial cells supporting KSHV stable latency (TIVE-LTC) expressed elevated levels of functional COX-2 and microsomal PGE2 synthase (m-PGES), and secreted the predominant eicosanoid inflammatory metabolite PGE2. Infected HMVEC-d and TIVE-LTC cells secreted a variety of ICs, GFs, angiogenic factors and matrix metalloproteinases (MMPs), which were significantly abrogated by COX-2 inhibition either by chemical inhibitors or by siRNA. The ability of these factors to induce tube formation of uninfected endothelial cells was also inhibited. PGE2, secreted early during KSHV infection, profoundly increased the adhesion of uninfected endothelial cells to fibronectin by activating the small G protein Rac1. COX-2 inhibition considerably reduced KSHV latent ORF73 gene expression and survival of TIVE-LTC cells. Collectively, these studies underscore the pivotal role of KSHV induced COX-2/PGE2 in creating KS lesion like microenvironment during de novo infection. Since COX-2 plays multiple roles in KSHV latent gene expression, which themselves are powerful mediators of cytokine induction, anti-apoptosis, cell survival and viral genome maintainence, effective inhibition of COX-2 via well-characterized clinically approved COX-2 inhibitors could potentially be used in treatment to control latent KSHV infection and ameliorate KS
    corecore