82 research outputs found

    Pre-M Phase-promoting Factor Associates with Annulate Lamellae in Xenopus Oocytes and Egg Extracts

    Get PDF
    We have used complementary biochemical and in vivo approaches to study the compartmentalization of M phase-promoting factor (MPF) in prophase Xenopus eggs and oocytes. We first examined the distribution of MPF (Cdc2/CyclinB2) and membranous organelles in high-speed extracts of Xenopus eggs made during mitotic prophase. These extracts were found to lack mitochondria, Golgi membranes, and most endoplasmic reticulum (ER) but to contain the bulk of the pre-MPF pool. This pre-MPF could be pelleted by further centrifugation along with components necessary to activate it. On activation, Cdc2/CyclinB2 moved into the soluble fraction. Electron microscopy and Western blot analysis showed that the pre-MPF pellet contained a specific ER subdomain comprising "annulate lamellae" (AL): stacked ER membranes highly enriched in nuclear pores. Colocalization of pre-MPF with AL was demonstrated by anti-CyclinB2 immunofluorescence in prophase oocytes, in which AL are positioned close to the vegetal surface. Green fluorescent protein-CyclinB2 expressed in oocytes also localized at AL. These data suggest that inactive MPF associates with nuclear envelope components just before activation. This association may explain why nuclei and centrosomes stimulate MPF activation and provide a mechanism for targeting of MPF to some of its key substrates

    Highly Asynchronous and Asymmetric Cleavage Divisions Accompany Early Transcriptional Activity in Pre-Blastula Medaka Embryos

    Get PDF
    In the initial phase of development of fish embryos, a prominent and critical event is the midblastula transition (MBT). Before MBT cell cycle is rapid, highly synchronous and zygotic gene transcription is turned off. Only during MBT the cell cycle desynchronizes and transcription is activated. Multiple mechanisms, primarily the nucleocytoplasmic ratio, are supposed to control MBT activation. Unexpectedly, we find in the small teleost fish medaka (Oryzias latipes) that at very early stages, well before midblastula, cell division becomes asynchronous and cell volumes diverge. Furthermore, zygotic transcription is extensively activated already after the 64-cell stage. Thus, at least in medaka, the transition from maternal to zygotic transcription is uncoupled from the midblastula stage and not solely controlled by the nucleocytoplasmic ratio

    Fantastically reasonable: ambivalence in the representation of science and technology in super-hero comics

    Full text link
    A long-standing contrast in academic discussions of science concerns its perceived disenchanting or enchanting public impact. In one image, science displaces magical belief in unknowable entities with belief in knowable forces and processes and reduces all things to a single technical measure. In the other, science is itself magically transcendent, expressed in technological adulation and an image of scientists as wizards or priests. This paper shows that these contrasting images are also found in representations of science in super-hero comics, which, given their lowly status in Anglo-American culture, would seem an unlikely place to find such commonality with academic discourse. It is argued that this is evidence that the contrast constitutes an ambivalence arising from the dilemmas that science poses; they are shared rhetorics arising from and reflexively feeding a set of broad cultural concerns. This is explored through consideration of representations of science at a number of levels in the comics, with particular focus on the science-magic constellation, and enchanted and disenchanted imagery in representations of technology and scientists. It is concluded that super-hero comics are one cultural arena where the public meaning of science is actively worked out, an activity that unites “expert” and “non-expert” alike

    Conditional targeting of MAD1 to kinetochores is sufficient to reactivate the spindle assembly checkpoint in metaphase

    Get PDF
    Fidelity of chromosome segregation is monitored by the spindle assembly checkpoint (SAC). Key components of the SAC include MAD1, MAD2, BUB1, BUB3, BUBR1, and MPS1. These proteins accumulate on kinetochores in early prometaphase but are displaced when chromosomes attach to microtubules and/or biorient on the mitotic spindle. As a result, stable attachment of the final chromosome satisfies the SAC, permitting activation of the anaphase promoting complex/cyclosome (APC/C) and subsequent anaphase onset. SAC satisfaction is reversible, however, as addition of taxol during metaphase stops cyclin B1 degradation by the APC/C. We now show that targeting MAD1 to kinetochores during metaphase is sufficient to reestablish SAC activity after initial silencing. Using rapamycin-induced heterodimerization of FKBP-MAD1 to FRB-MIS12 and live monitoring of cyclin B1 degradation, we show that timed relocalization of MAD1 during metaphase can stop cyclin B1 degradation without affecting chromosome-spindle attachments. APC/C inhibition represented true SAC reactivation, as FKBP-MAD1 required an intact MAD2-interaction motif and MPS1 activity to accomplish this. Our data show that MAD1 kinetochore localization dictates SAC activity and imply that SAC regulatory mechanisms downstream of MAD1 remain functional in metaphase. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00412-014-0458-9) contains supplementary material, which is available to authorized users

    A quantitative systems view of the spindle assembly checkpoint

    Get PDF
    The idle assembly checkpoint acts to delay chromosome segregation until all duplicated sister chromatids are captured by the mitotic spindle. This pathway ensures that each daughter cell receives a complete copy of the genome. The high fidelity and robustness of this process have made it a subject of intense study in both the experimental and computational realms. A significant number of checkpoint proteins have been identified but how they orchestrate the communication between local spindle attachment and global cytoplasmic signalling to delay segregation is not yet understood. Here, we propose a systems view of the spindle assembly checkpoint to focus attention on the key regulators of the dynamics of this pathway. These regulators in turn have been the subject of detailed cellular measurements and computational modelling to connect molecular function to the dynamics of spindle assembly checkpoint signalling. A review of these efforts reveals the insights provided by such approaches and underscores the need for further interdisciplinary studies to reveal in full the quantitative underpinnings of this cellular control pathway

    Nucleolus: the fascinating nuclear body

    Get PDF
    Nucleoli are the prominent contrasted structures of the cell nucleus. In the nucleolus, ribosomal RNAs are synthesized, processed and assembled with ribosomal proteins. RNA polymerase I synthesizes the ribosomal RNAs and this activity is cell cycle regulated. The nucleolus reveals the functional organization of the nucleus in which the compartmentation of the different steps of ribosome biogenesis is observed whereas the nucleolar machineries are in permanent exchange with the nucleoplasm and other nuclear bodies. After mitosis, nucleolar assembly is a time and space regulated process controlled by the cell cycle. In addition, by generating a large volume in the nucleus with apparently no RNA polymerase II activity, the nucleolus creates a domain of retention/sequestration of molecules normally active outside the nucleolus. Viruses interact with the nucleolus and recruit nucleolar proteins to facilitate virus replication. The nucleolus is also a sensor of stress due to the redistribution of the ribosomal proteins in the nucleoplasm by nucleolus disruption. The nucleolus plays several crucial functions in the nucleus: in addition to its function as ribosome factory of the cells it is a multifunctional nuclear domain, and nucleolar activity is linked with several pathologies. Perspectives on the evolution of this research area are proposed
    corecore