93 research outputs found

    Increased endothelin-1 in colorectal cancer and reduction of tumour growth by ET A receptor antagonism

    Get PDF
    Endothelin-1 (ET-1) is a vasoconstrictor peptide which stimulates proliferation in vitro in different cell types, including colorectal cancer cells. Raised ET-1 levels have been detected both on tissue specimens and in the plasma of patients with cancers. To investigate the role of ET-1 in colorectal cancer: (i) ET-1 plasma levels in patients with colorectal cancer were measured by radioimmunoassay: group 1 = controls (n = 22), group 2 = primary colorectal cancer only (n = 39), group 3 = liver metastases only (n = 26); (ii) ET-1 expression in primary colorectal cancer specimens (n =10) was determined immunohistochemically and (iii) the effect of intraportally infused antagonists to the two ET-1 receptors, ET A and ET B, on the growth of liver metastases in a rat model was assessed. ET-1 plasma levels were significantly increased in both patients with primary tumour and patients with metastases, compared to controls (P < 0.01, 3.9 ± 1.4, 4.5 ± 1.5, vs. 2.75 ± 1.37 pg/ml, respectively). Immunohistochemically, strong expression of ET-1 was found in the cytoplasm, stroma and blood vessels of cancers, unlike the normal colon where only the apical layer of the epithelium, vascular endothelial cells and surrounding stroma were positively stained. In the rat model, there was significant reduction in liver tumour weights compared to controls, following treatment with the ET A antagonist (BQ123) 30 min after the intraportal inoculation of tumour cells (P < 0.05). These results suggest ET-1 is produced by colorectal cancers and may play a role in the growth of colorectal cancer acting through ET A receptors. ET A antagonists are indicated as potential anti-cancer agents. © 2001 Cancer Research Campaign http://www.bjcancer.co

    HNF4alpha Dysfunction as a Molecular Rational for Cyclosporine Induced Hypertension

    Get PDF
    Induction of tolerance against grafted organs is achieved by the immunosuppressive agent cyclosporine, a prominent member of the calcineurin inhibitors. Unfortunately, its lifetime use is associated with hypertension and nephrotoxicity. Several mechanism for cyclosporine induced hypertension have been proposed, i.e. activation of the sympathetic nervous system, endothelin-mediated systemic vasoconstriction, impaired vasodilatation secondary to reduction in prostaglandin and nitric oxide, altered cytosolic calcium translocation, and activation of the renin-angiotensin system (RAS). In this regard the molecular basis for undue RAS activation and an increased signaling of the vasoactive oligopeptide angiotensin II (AngII) remain elusive. Notably, angiotensinogen (AGT) is the precursor of AngII and transcriptional regulation of AGT is controlled by the hepatic nuclear factor HNF4alpha. To better understand the molecular events associated with cyclosporine induced hypertension, we investigated the effect of cyclosporine on HNF4alpha expression and activity and searched for novel HNF4alpha target genes among members of the RAS cascade. Using bioinformatic algorithm and EMSA bandshift assays we identified angiotensin II receptor type 1 (AGTR1), angiotensin I converting enzyme (ACE), and angiotensin I converting enzyme 2 (ACE2) as genes targeted by HNF4alpha. Notably, cyclosporine represses HNF4alpha gene and protein expression and its DNA-binding activity at consensus sequences to AGT, AGTR1, ACE, and ACE2. Consequently, the gene expression of AGT, AGTR1, and ACE2 was significantly reduced as evidenced by quantitative real-time RT-PCR. While RAS is composed of a sophisticated interplay between multiple factors we propose a decrease of ACE2 to enforce AngII signaling via AGTR1 to ultimately result in vasoconstriction and hypertension. Taken collectively we demonstrate cyclosporine to repress HNF4alpha activity through calcineurin inhibitor mediated inhibition of nuclear factor of activation of T-cells (NFAT) which in turn represses HNF4alpha that leads to a disturbed balance of RAS

    Stimuli of Sensory-Motor Nerves Terminate Arterial Contractile Effects of Endothelin-1 by CGRP and Dissociation of ET-1/ETA-Receptor Complexes

    Get PDF
    Endothelin-1 (ET-1), a long-acting paracrine mediator, is implicated in cardiovascular diseases but clinical trials with ET-receptor antagonists were not successful in some areas. We tested whether the quasi-irreversible receptor-binding of ET-1 (i) limits reversing effects of the antagonists and (ii) can be selectively dissociated by an endogenous counterbalancing mechanism.-receptor complexes.-receptors by ET-1 (i) occur at an antagonist-insensitive site of the receptor and (ii) are selectively terminated by endogenously released CGRP. Hence, natural stimuli of sensory-motor nerves that stimulate release of endogenous CGRP can be considered for therapy of diseases involving ET-1

    Metamorphosis of Subarachnoid Hemorrhage Research: from Delayed Vasospasm to Early Brain Injury

    Get PDF
    Delayed vasospasm that develops 3–7 days after aneurysmal subarachnoid hemorrhage (SAH) has traditionally been considered the most important determinant of delayed ischemic injury and poor outcome. Consequently, most therapies against delayed ischemic injury are directed towards reducing the incidence of vasospasm. The clinical trials based on this strategy, however, have so far claimed limited success; the incidence of vasospasm is reduced without reduction in delayed ischemic injury or improvement in the long-term outcome. This fact has shifted research interest to the early brain injury (first 72 h) evoked by SAH. In recent years, several pathological mechanisms that activate within minutes after the initial bleed and lead to early brain injury are identified. In addition, it is found that many of these mechanisms evolve with time and participate in the pathogenesis of delayed ischemic injury and poor outcome. Therefore, a therapy or therapies focused on these early mechanisms may not only prevent the early brain injury but may also help reduce the intensity of later developing neurological complications. This manuscript reviews the pathological mechanisms of early brain injury after SAH and summarizes the status of current therapies

    Endothelium-derived endothelin-1

    Get PDF
    One year after the revelation by Dr. Furchgott in 1980 that the endothelium was obligatory for acetylcholine to relax isolated arteries, it was clearly shown that the endothelium could also promote contraction. In 1988, Dr. Yanagisawa’s group identified endothelin-1 (ET-1) as the first endothelium-derived contracting factor. The circulating levels of this short (21-amino acid) peptide were quickly determined in humans, and it was reported that, in most cardiovascular diseases, circulating levels of ET-1 were increased, and ET-1 was then tagged as “a bad guy.” The discovery of two receptor subtypes in 1990, ET(A) and ET(B), permitted optimization of the first dual ET-1 receptor antagonist in 1993 by Dr. Clozel’s team, who entered clinical development with bosentan, which was offered to patients with pulmonary arterial hypertension in 2001. The revelation of Dr. Furchgott opened a Pandora’s box with ET-1 as one of the actors. In this brief review, we will discuss the physiological and pathophysiological role of endothelium-derived ET-1 focusing on the regulation of the vascular tone, and as much as possible in humans. The coronary bed will be used as a running example in this review because it is the most susceptible to endothelial dysfunction, but references to the cerebral and renal circulation will also be made. Many of the cardiovascular complications associated with aging and cardiovascular risk factors are initially attributable, at least in part, to endothelial dysfunction, particularly dysregulation of the vascular function associated with an imbalance in the close interdependence of nitric oxide and ET-1

    Chronic treatment with the Ca2+ channel inhibitor RO 40-5967 potentiates endothelium-dependent relaxations in the aorta of the hypertensive salt sensitive Dahl rat

    No full text
    Experiments were designed to determine whether or not chronic treatment with the Ca2+ channel antagonist RO 40-5967 affects endothelium-dependent relaxations in the aorta of hypertensive, salt-sensitive Dahl rats. Salt- resistant and salt-sensitive Dahl rats were fed a diet containing 8% NaCl (for 8 weeks); in each group, half of the animals were given RO 40-5967 chronically (0.4 mg/l; in the drinking water). RO 40-5967 lowered arterial blood pressure in the salt-sensitive, hypertensive, but not in the salt- resistant, normotensive rats. Rings, with and without endothelium, of thoracic aortas were suspended for isometric tension recording in conventional organ chambers. The chronic treatment with RO 40-5967 potentiated endothelium-dependent relaxations to acetylcholine, adenosine- diphosphate and thrombin in preparations from salt-sensitive, but not in those of salt-resistant Dahl rats. The treatment also augmented, in aortas from salt-sensitive animals, the relaxations of rings without endothelium to the donor of nitric oxide, SIN-1. These experiments demonstrate that chronic administration of RO 40-5967 potentiates endothelium-dependent relaxations in arteries from animals with salt-induced hypertension. This potentiation can be explained in part by an augmented sensitivity of the vascular smooth muscle to endothelium-derived nitric oxide.link_to_subscribed_fulltex
    corecore