4 research outputs found
The dual parametrization for gluon GPDs
We consider the application of the dual parametrization for the case of gluon
GPDs in the nucleon. This provides opportunities for the more flexible modeling
unpolarized gluon GPDs in a nucleon which in particular contain the invaluable
information on the fraction of nucleon spin carried by gluons. We perform the
generalization of Abel transform tomography approach for the case of gluons. We
also discuss the skewness effect in the framework of the dual parametrization.
We strongly suggest to employ the fitting strategies based on the dual
parametrization to extract the information on GPDs from the experimental data.Comment: 37 pages, 2 figure
Transversity in hard exclusive electroproduction of pseudoscalar mesons
Estimates for electroproduction of pseudoscalar mesons at small values of
skewness are presented. Cross sections and asymmetries for these processes are
calculated within the handbag approach which is based on factorization in hard
parton subprocesses and soft generalized parton distributions (GPDs). The
latter are constructed from double distributions. Transversity GPDs are taken
into account; they are accompanied by twist-3 meson wave functions. For most
pseudoscalar-meson channels a combination of H-tilde_T plays a
particularly prominent role. This combination of GPDs which we constrain by
moments obtained from lattice QCD, leads with the exception of the pi+ and eta'
channels, to large transverse cross sections.Comment: 36 pages and 27 figure
eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV
Differential cross sections for the reaction gamma p -> eta-prime p have been
measured with the CLAS spectrometer and a tagged photon beam with energies from
1.527 to 2.227 GeV. The results reported here possess much greater accuracy
than previous measurements. Analyses of these data indicate for the first time
the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710)
resonances, known to couple strongly to the eta N channel in photoproduction on
the proton, and the importance of j=3/2 resonances in the process.Comment: 6 pages, 3 figure
Electron Scattering From High-Momentum Neutrons in Deuterium
We report results from an experiment measuring the semi-inclusive reaction
where the proton is moving at a large angle relative to the
momentum transfer. If we assume that the proton was a spectator to the reaction
taking place on the neutron in deuterium, the initial state of that neutron can
be inferred. This method, known as spectator tagging, can be used to study
electron scattering from high-momentum (off-shell) neutrons in deuterium. The
data were taken with a 5.765 GeV electron beam on a deuterium target in
Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section
was extracted for different values of final-state missing mass ,
backward proton momentum and momentum transfer . The data
are compared to a simple PWIA spectator model. A strong enhancement in the data
observed at transverse kinematics is not reproduced by the PWIA model. This
enhancement can likely be associated with the contribution of final state
interactions (FSI) that were not incorporated into the model. A ``bound neutron
structure function'' was extracted as a function of and
the scaling variable at extreme backward kinematics, where effects of
FSI appear to be smaller. For MeV/c, where the neutron is far
off-shell, the model overestimates the value of in the region of
between 0.25 and 0.6. A modification of the bound neutron structure
function is one of possible effects that can cause the observed deviation.Comment: 33 pages RevTeX, 9 figures, to be submitted to Phys. Rev. C. Fixed 1
Referenc