58 research outputs found

    Pemetrexed Induced Thymidylate Synthase Inhibition in Non-Small Cell Lung Cancer Patients: A Pilot Study with 3 '-Deoxy-3 '-[F-18]fluorothymidine Positron Emission Tomography

    Get PDF
    OBJECTIVES: Pemetrexed is a thymidylate synthase (TS) inhibitor and is effective in non-small cell lung cancer (NSCLC). 3'-deoxy-3'-[¹⁸F]fluorothymidine (¹⁸F-FLT), a proliferation marker, could potentially identify tumor specific TS-inhibition. The aim of this study was to investigate the effect of pemetrexed-induced TS-inhibition on ¹⁸F-FLT uptake 4 hours after pemetrexed administration in metastatic NSCLC patients. METHODS: Fourteen NSCLC patients underwent dynamic ¹⁸F-FLT positron emission tomography (PET) scans at baseline and 4 hours after the first dose of pemetrexed. Volumes of interest were defined with a 41%, 50% and 70% threshold of the maximum pixel. Kinetic analysis and simplified measures were performed. At one, two, four and six hours after pemetrexed, plasma deoxyuridine was measured as systemic indicator of TS-inhibition. Tumor response measured with response evaluation criteria in solid tumors (RECIST), time to progression (TTP) and overall survival (OS) were determined. RESULTS: Eleven patients had evaluable ¹⁸F-FLT PET scans at baseline and 4 hours after pemetrexed. Two patients had increased ¹⁸F-FLT uptake of 35% and 31% after pemetrexed, whereas two other patients had decreased uptake of 31%. In the remaining seven patients ¹⁸F-FLT uptake did not change beyond test-retest borders. In all patients deoxyuridine levels raised after administration of pemetrexed, implicating pemetrexed-induced TS-inhibition. ¹⁸F-FLT uptake in bone marrow was significantly increased 4 hours after pemetrexed administration. Six weeks after the start of treatment 5 patients had partial response, 4 stable disease and 2 progressive disease. Median TTP was 4.2 months (range 3.0-7.4 months); median OS was 13.0 months (range 5.1-30.8 months). Changes in ¹⁸F-FLT uptake were not predictive for tumor response, TTP or OS. CONCLUSIONS: Measuring TS-inhibition in a clinical setting 4 hours after pemetrexed revealed a non-systematic change in ¹⁸F-FLT uptake within the tumor. No significant association with tumor response, TTP or OS was observed

    Correlation between 5-fluorouracil metabolism and treatment response in two variants of C26 murine colon carcinoma

    Get PDF
    Following an i.p. dose of 150 mg x kg(-1) 5-fluorouracil (5-FU), drug uptake and metabolism over a 2-h period were studied by in vivo (19)F magnetic resonance spectroscopy (MRS) for the murine colon carcinoma lines C26-B (5-FU-insensitive; n=11) and C26-10 (5-FU-sensitive; n=15) implanted s.c. in Balb/C mice. Time courses for tumour growth, intracellular levels of FdUMP, thymidylate synthase (TS) activity, and 5-FU in RNA were also determined, and the effects of a 9.5-min period of carbogen breathing, starting 1 min before drug administration, on MRS-detected 5-FU metabolism and tumour growth curves were examined. Both tumour variants generated MRS-detectable 5-FU nucleotides and showed similar initial growth inhibition after treatment. However, the growth rate of C26-B tumours returned to normal, while the sensitive C26-10 tumours, which produced larger fluoronucleotide pools, still showed moderate growth inhibition. Carbogen breathing did not significantly influence 5-FU uptake or fluoronucleotide production but did significantly enhance growth inhibition in C26-10 tumours. While both tumour variants exhibited incorporation of 5-FU into RNA and inhibition of TS via FdUMP, clearance of 5-FU from RNA and recovery of TS activity were greater for the insensitive C26-B line, indicating that these processes, in addition to 5-FU uptake and metabolism, may be important determinants of drug sensitivity and treatment respons

    Paclitaxel alters the expression and specific activity of deoxycytidine kinase and cytidine deaminase in non-small cell lung cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We observed that paclitaxel altered the pharmacokinetic properties of gemcitabine in patients with non-small cell lung cancer (NSCLC) and limited the accumulation of gemcitabine and its metabolites in various primary and immortalized human cells. Therefore, we classified the drug-drug interaction and the effects of paclitaxel on deoxycytidine kinase (dCK) and cytidine deaminase (CDA) in three NSCLC cell lines. These enzymes are responsible for the metabolism of gemcitabine to its deaminated metabolite dFdU (80% of the parent drug) and the phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP. These metabolites appear to relate to sensitivity and tolerability of gemcitabine based on previous animal and laboratory studies.</p> <p>Methods</p> <p>Three immortalized human cells representative of the most common histological subtypes identified in patients with advanced NSCLC were exposed to the individual drugs or combinations to complete a multiple drug effect analysis. These same cell lines were exposed to vehicle-control or paclitaxel and the mRNA levels, protein expression and specific activity of dCK and CDA were compared. Comparisons were made using a two-tailed paired t-test or analysis of variance with a P value of < 0.05 considered significant.</p> <p>Results</p> <p>The multiple drug effect analysis indicated synergy for H460, H520 and H838 cells independent of sequence. As anticipated, paclitaxel-gemcitabine increased the number of G2/M cells, whereas gemcitabine-paclitaxel increased the number of G0/G1 or S cells. Paclitaxel significantly decreased dCK and CDA mRNA levels in H460 and H520 cells (40% to 60%, P < 0.05) and lowered dCK protein (24% to 56%, P < 0.05) without affecting CDA protein. However, paclitaxel increased both dCK (10% to 50%) and CDA (75% to 153%) activity (P < 0.05). Paclitaxel caused substantial declines in the accumulation of the deaminated and phosphorylated metabolites in H520 cells (P < 0.05); the metabolites were not measurable in the remaining two cell lines. The ratio of dCK to CDA mRNA levels corresponded to the combination index (CI) estimated for sequential paclitaxel-gemcitabine.</p> <p>Conclusion</p> <p>In summary, paclitaxel altered the mRNA levels and specific activity of dCK and CDA and these effects could be dependent on histological subtype. More cell and animal studies are needed to further characterize the relationship between mRNA levels and the overall drug-drug interaction and the potential to use histological subtype as a predictive factor in the selection of an appropriate anticancer drug regimen.</p

    The impact of surgically induced ischaemia on protein levels in patients undergoing rectal cancer surgery

    Get PDF
    The goal of targeted therapy has driven a search for markers of prognosis and response to adjuvant therapy. The surgical resection of a solid tumour induces tissue ischaemia and acidosis, both potent mediators of gene expression. This study investigated the impact of colorectal cancer (CRC) surgery on prognostic and predictive marker levels. Tumour expression of thymidylate synthase, thymidine phosphorylase, cyclin A, vascular endothelial growth factor (VEGF), carbonic anhydrase-9, hypoxia inducible factor-1Ξ±, and glucose transporter-1 (GLUT-1) proteins was determined before and after rectal cancer surgery. Spectral imaging of tissue sections stained by immunohistochemistry provided quantitative data. Surgery altered thymidylate synthase protein expression (P=0.02), and this correlated with the change in the proliferation marker cyclin A. The expression of hypoxia inducible factor-1Ξ±, VEGF, and GLUT-1 proteins was also different following surgery. Colorectal cancer surgery significantly impacts on intratumoral gene expression, suggesting archival specimens may not accurately reflect in situ marker levels. Although rectal cancer was the studied model, the results may be applicable to any solid tumour undergoing extirpation in which molecular markers have been proposed to guide patient therapy

    Gene therapy for carcinoma of the breast: Genetic toxins

    Get PDF
    Gene therapy was initially envisaged as a potential treatment for genetically inherited, monogenic disorders. The applications of gene therapy have now become wider, however, and include cardiovascular diseases, vaccination and cancers in which conventional therapies have failed. With regard to oncology, various gene therapy approaches have been developed. Among them, the use of genetic toxins to kill cancer cells selectively is emerging. Two different types of genetic toxins have been developed so far: the metabolic toxins and the dominant-negative class of toxins. This review describes these two different approaches, and discusses their potential applications in cancer gene therapy

    Involvement of bcl-2 and p21waf1 proteins in response of human breast cancer cell clones to Tomudex

    Get PDF
    Mechanisms of resistance to Tomudex include increased thymidylate synthase activity, as well as reduced intracellular drug uptake and polyglutamation. However, little is known about other mechanisms of resistance, such as a possible protection against Tomudex-induced apoptosis mediated by bcl-2. We transfected the MDA-MB-435 human breast cancer cell line, which is characterized by a mutated p53 gene, with cDNA of the bcl-2 gene and generated two clones (MDA-bcl4 and MDA-bcl7) characterized by bcl-2 expression twofold and fourfold that observed in the control cell clone (MDAneo). A concomitant overexpression of p21wafl was also detected in the MDA-bcl7 clone. The MDA-bcl4 clone was three times more resistant to a 24-h Tomudex exposure than the MDAneo clone, whereas the MDA-bcl7 clone was as sensitive to Tomudex as the control cell clone. A lower sensitivity of the MDA-bcl4 clone than MDAneo and MDA-bcl7 clones to 5-fluorouracil and gemcitabine was also observed. No significant difference was noted in the susceptibility of clones to fludarabine and methothrexate. Basal levels of thymidylate synthase activity were superimposable in the three clones. Tomudex induced a marked accumulation of cells in the S phase in all the clones. However, an apoptotic hypodiploid DNA peak and the characteristic nuclear morphology of apoptosis were observed only in the MDA-bcl7 clone after exposure to Tomudex. No difference in the treatment-induced modulation of proteins involved in cell cycle progression (cyclin A, cdk2, pRB, E2F-1) and apoptosis (bcl-2, bax) was observed in the three clones. The only exception was that the expression of p21wafl in the MDA-bcl4 clone was inducible at a Tomudex concentration much higher than that required to induce the protein in the other clones. Overall, the results indicate that bcl-2 and p21wafl proteins concur in determining the cellular profile of sensitivity/resistance to Tomudex. Β© 1999 Cancer Research Campaig

    Mechanism of trifluorothymidine potentiation of oxaliplatin-induced cytotoxicity to colorectal cancer cells

    Get PDF
    Oxaliplatin (OHP) is an anticancer agent that acts by formation of Platinum-DNA (Pt-DNA) adducts resulting in DNA-strand breaks and is used for the treatment of colorectal cancer. The pyrimidine analog trifluorothymidine (TFT) forms together with a thymidine phosphorylase inhibitor (TPI) the anticancer drug formulation TAS-102, in which TPI enhances the bioavailability of TFT in vivo. In this in vitro study the combined cytotoxic effects of OHP with TFT were investigated in human colorectal cancer cells as a model for TAS-102 combinations. In a panel of five colon cancer cell lines (WiDr, H630, Colo320, SNU-C4 and SW1116) we evaluated the OHP-TFT drug combinations using the multiple drug–effect analysis with CalcuSyn software, in which the combination index (CI) indicates synergism (CI<0.9), additivity (CI=0.9–1.1) or antagonism (CI>1.1). Drug target analysis was used for WiDr, H630 and SW1116 to investigate whether there was an increase in Pt-DNA adduct formation, DNA damage induction, cell cycle delay and apoptosis. Trifluorothymidine combined with OHP resulted in synergism for all cell lines (all CI<0.9). This was irrespective of schedule in which either one of the drugs was kept at a constant concentration (using variable drug ratio) or when the two drugs were added in a 1 : 1 IC50-based molar ratio. Synergism could be increased for WiDr using sequential drug treatment schedules. Trifluorothymidine increased Pt-DNA adduct formation significantly in H630 and SW1116 (14.4 and 99.1%, respectively; P<0.05). Platinum-DNA adducts were retained best in SW1116 in the presence of TFT. More DNA-strand breaks were induced in SW1116 and the combination increased DNA damage induction (>20%) compared with OHP alone. Exposure to the drugs induced a clear cell-cycle S-phase arrest, but was dose schedule and cell line dependent. Trifluorothymidine (TFT) and OHP both induced apoptosis, which increased significantly for WiDr and SW1116 after TFT–OHP exposure (18.8 and 20.6% respectively; P<0.05). The basal protein levels of ERCC1 DNA repair enzyme were not related to the DNA damage that was induced in the cell lines. In conclusion, the combination of TFT with the DNA synthesis inhibitor OHP induces synergism in colorectal cancer cells, but is dependent on the dose and treatment schedule used
    • …
    corecore