19 research outputs found

    Muscle precursor cells in the developing limbs of two isopods (Crustacea, Peracarida): an immunohistochemical study using a novel monoclonal antibody against myosin heavy chain

    Get PDF
    In the hot debate on arthropod relationships, Crustaceans and the morphology of their appendages play a pivotal role. To gain new insights into how arthropod appendages evolved, developmental biologists recently have begun to examine the expression and function of Drosophila appendage genes in Crustaceans. However, cellular aspects of Crustacean limb development such as myogenesis are poorly understood in Crustaceans so that the interpretative context in which to analyse gene functions is still fragmentary. The goal of the present project was to analyse muscle development in Crustacean appendages, and to that end, monoclonal antibodies against arthropod muscle proteins were generated. One of these antibodies recognises certain isoforms of myosin heavy chain and strongly binds to muscle precursor cells in malacostracan Crustacea. We used this antibody to study myogenesis in two isopods, Porcellio scaber and Idotea balthica (Crustacea, Malacostraca, Peracarida), by immunohistochemistry. In these animals, muscles in the limbs originate from single muscle precursor cells, which subsequently grow to form multinucleated muscle precursors. The pattern of primordial muscles in the thoracic limbs was mapped, and results compared to muscle development in other Crustaceans and in insects

    Influence of food resources on the ranging pattern of Northern pig-tailed macaques (Macaca leonina)

    Full text link
    Food availability may influence primates’ home range size and use. Understanding this relationship may facilitate the design of conservation strategies. We aimed to determine how fruit availability influences the ranging patterns of a group of northern pig-tailed macaques (Macaca leonina) living around the visitor center of Khao Yai National Park, Thailand. We predicted that macaques would increase their range during low fruit abundance periods to gather high-quality food and that they would go where there are more fruits or more fruits of particular species. We also predicted that human food, linked to human pre sence, would attract the macaques. We followed the macaques and recorded their diet and movements within their home range. We superimposed a grid on kernels defining the monthly home range surface to compare spatially macaques’ travel and the availability of fruits measured on botanical transects. Our results showed that the macaques increased their monthly home range in March, probably to obtain newly available fruits. During high fruit abundance seasons, they spent more time near particular fruit species. In August and September, although fruits became rare again, macaques kept their home range large, perhaps to find enough fruits as supplies dwindled. Finally, from October to February, they decreased their monthly home range size while consuming human food, a highquality item. In conclusion, the macaques used several ranging strategies according to fruit availability. however, we think that, without human food, macaques would tend to increase their range during low fruit abundance periods, as predicted

    Post-GWAS in prostate cancer: from genetic association to biological contribution

    No full text
    Genome-wide association studies (GWAS) have been successful in deciphering the genetic component of predisposition to many human complex diseases including prostate cancer. Germline variants identified by GWAS progressively unravelled the substantial knowledge gap concerning prostate cancer heritability. With the beginning of the post-GWAS era, more and more studies reveal that, in addition to their value as risk markers, germline variants can exert active roles in prostate oncogenesis. Consequently, current research efforts focus on exploring the biological mechanisms underlying specific susceptibility loci known as causal variants by applying novel and precise analytical methods to available GWAS data. Results obtained from these post-GWAS analyses have highlighted the potential of exploiting prostate cancer risk-associated germline variants to identify new gene networks and signalling pathways involved in prostate tumorigenesis. In this Review, we describe the molecular basis of several important prostate cancer-causal variants with an emphasis on using post-GWAS analysis to gain insight into cancer aetiology. In addition to discussing the current status of post-GWAS studies, we also summarize the main molecular mechanisms of potential causal variants at prostate cancer risk loci and explore the major challenges in moving from association to functional studies and their implication in clinical translation
    corecore