8 research outputs found

    Low incubation temperature during early development negatively affects survival and related innate immune processes in zebrafish larvae exposed to lipopolysaccharide

    Get PDF
    Abstract In many fish species, the immune system is significantly constrained by water temperature. In spite of its critical importance in protecting the host against pathogens, little is known about the influence of embryonic incubation temperature on the innate immunity of fish larvae. Zebrafish (Danio rerio) embryos were incubated at 24, 28 or 32 °C until first feeding. Larvae originating from each of these three temperature regimes were further distributed into three challenge temperatures and exposed to lipopolysaccharide (LPS) in a full factorial design (3 incubation × 3 challenge temperatures). At 24 h post LPS challenge, mortality of larvae incubated at 24 °C was 1.2 to 2.6-fold higher than those kept at 28 or 32 °C, regardless of the challenge temperature. LPS challenge at 24 °C stimulated similar immune-related processes but at different levels in larvae incubated at 24 or 32 °C, concomitantly with the down-regulation of some chemokine and lysozyme transcripts in the former group. Larvae incubated at 24 °C and LPS-challenged at 32 °C exhibited a limited immune response with up-regulation of hypoxia and oxidative stress processes. Annexin A2a, S100 calcium binding protein A10b and lymphocyte antigen-6, epidermis were identified as promising candidates for LPS recognition and signal transduction

    Inferring the evolution of the major histocompatibility complex of wild pigs and peccaries using hybridisation DNA capture-based sequencing

    No full text
    The major histocompatibility complex (MHC) is a key genomic model region for understanding the evolution of gene families and the co-evolution between host and pathogen. To date, MHC studies have mostly focused on species from major vertebrate lineages. The evolution of MHC classical (Ia) and non-classical (Ib) genes in pigs has attracted interest because of their antigen presentation roles as part of the adaptive immune system. The pig family Suidae comprises over 18 extant species (mostly wild), but only the domestic pig has been extensively sequenced and annotated. To address this, we used a DNA-capture approach, with probes designed from the domestic pig genome, to generate MHC data for 11 wild species of pigs and their closest living family, Tayassuidae. The approach showed good efficiency for wild pigs (~80% reads mapped, ~87× coverage), compared to tayassuids (~12% reads mapped, ~4× coverage). We retrieved 145 MHC loci across both families. Phylogenetic analyses show that the class Ia and Ib genes underwent multiple duplications and diversifications before suids and tayassuids diverged from their common ancestor. The histocompatibility genes mostly form orthologous groups and there is genetic differentiation for most of these genes between Eurasian and sub-Saharan African wild pigs. Tests of selection showed that the peptide-binding region of class Ib genes was under positive selection. These findings contribute to better understanding of the evolutionary history of the MHC, specifically, the class I genes, and provide useful data for investigating the immune response of wild populations against pathogens

    Horticultural Science’s Role in Meeting the Need of Urban Populations

    No full text
    corecore