15 research outputs found

    Ocean tides and Heinrich events

    Full text link
    Climate varied enormously over the most recent ice age1 — for example, large pulses of ice-rafted debris2, originating mainly from the Labrador Sea3, were deposited into the North Atlantic at roughly 7,000-year intervals, with global climatic implications3. Here we show that ocean tides within the Labrador Sea were exceptionally large over the period spanning these huge, abrupt ice movements, which are known as Heinrich events. We propose that tides played a catalytic role in liberating iceberg armadas during that time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84375/1/nature_tidesheinrich.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/84375/2/432460a-s1.do

    Ice-shelf dynamics near the front of the Filchner-Ronne Ice Shelf, Antarctica, revealed by SAR interferometry: model/interferogram comparison

    No full text
    AbstractWe compare European remote-sensing satellite (ERS) synthetic aperture radar interferograms with artificial interferograms constructed using output of a finite-element ice-shelf flow model to study the dynamics of Filchner-Ronne Ice Shelf (FRIS), Antaretica, near Hemmen Ice Rise (HIR) where the iceberg-calving front intersects Berkner Island. We find that the model must account for rifts, mechanically competent sea ice which fills rifts, and ice softening in coastal boundary layers in order to agree with the ice-deformation pattern implied by observed interferograms. Analysis of the stress field in the model experiment that best matches the observed interferograms suggests that: (1) HIR introduces weakness into the ice shelf through the generation of large-scale rifts, and (2) the melange of sea ice and ice-shelf fragments that fills the rifts stabilizes the shelf front by providing mechanical coupling between the fractured shelf front and the adjacent coast. The rift-filling melange could melt more easily than the surrounding ice shelf and thus could represent a vulnerability of the FRIS to climate warming

    Rate of Mass Loss Across the Instability Threshold for Thwaites Glacier Determines Rate of Mass Loss for Entire Basin

    No full text
    Rapid change now underway on Thwaites Glacier (TG) raises concern that a threshold for unstoppable grounding line retreat has been or is about to be crossed. We use a high-resolution ice sheet model to examine the mechanics of TG self-sustained retreat by nudging the grounding line just past the point of instability. We find that by modifying surface slope in the region of the grounding line, the rate of the forcing dictates the rate of retreat, even after the external forcing is removed. Grounding line retreats that begin faster proceed more rapidly because the shorter time interval for the grounding line to erode into the grounded ice sheet means relatively thicker ice and larger driving stress upstream of the boundary. Retreat is sensitive to short-duration re-advances associated with reduced external forcing where the bathymetry allows regrounding, even when an instability is invoked

    Order in Antarctic ice streams

    No full text

    Palaeoclimate science: Pulsating ice sheet

    Full text link
    During the last ice age, huge numbers of icebergs were episodically discharged from an ice sheet that covered North America. Numerical modelling suggests that these events resulted from a conceptually simple feedback cycle
    corecore