27 research outputs found
Annual and seasonal movements of migrating short-tailed shearwaters reflect environmental variation in sub-Arctic and Arctic waters
The marine ecosystems of the Bering Sea and adjacent southern Chukchi Sea are experiencing rapid changes due to recent reductions in sea ice. Short-tailed shearwaters Puffinus tenuirostris visit this region in huge numbers between the boreal summer and autumn during non-breeding season, and represent one of the dominant top predators. To understand the implications for this species of ongoing environmental change in the Pacific sub-Arctic and Arctic seas, we tracked the migratory movements of 19 and 24 birds in 2010 and 2011, respectively, using light-level geolocators. In both years, tracked birds occupied the western (Okhotsk Sea and Kuril Islands) and eastern (southeast Bering Sea) North Pacific from May to July. In August–September of 2010, but not 2011, a substantial proportion (68 % of the tracked individuals in 2010 compared to 38 % in 2011) moved through the Bering Strait to feed in the Chukchi Sea. Based on the correlation with oceanographic variables, the probability of shearwater occurrence was highest in waters with sea surface temperatures (SSTs) of 8–10 °C over shallow depths. Furthermore, shearwaters spent more time flying when SST was warmer than 9 °C, suggesting increased search effort for prey. We hypothesized that the northward shift in the distribution of shearwaters may have been related to temperature-driven changes in the abundance of their dominant prey, krill (Euphausiacea), as the timing of krill spawning coincides with the seasonal increase in water temperature. Our results indicate a flexible response of foraging birds to ongoing changes in the sub-Arctic and Arctic ecosystems
Shearwater Foraging in the Southern Ocean: The Roles of Prey Availability and Winds
Background Sooty (Puffinus griseus) and short-tailed (P. tenuirostris) shearwaters are abundant seabirds that range widely across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for monitoring and ecosystem conservation and management. Methodology/Principal Findings Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions foraged in the Polar Front zone, and showed particular overlap in the region around 140°E. Short-tailed shearwaters from South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the flight paths taken by the birds on long foraging trips to Antarctic waters. Conclusions/Significance The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and the corresponding localised increases in the productivity of the Polar Front ecosystem
Recommended from our members
Determining the body condition of short-tailed shearwaters: Implications for migratory flight ranges and starvation events
Short-tailed shearwaters Puffinus tenuirostris migrate annually from breeding areas in southeast Australia and Tasmania to the Bering Sea to feed on abundant prey aggregations, mainly euphausiids. Occasionally thousands of shearwaters die of starvation en route, within, or on return from the Bering Sea. Collection of live and dead shearwaters in the southeastern Bering Sea in 1997, 1998, and 1999 allowed us to measure seasonal changes in energy reserves during a major mortality event. As birds lost body mass, lipid mass initially decreased faster than that of pectoralis muscle, but loss of pectoralis mass increased markedly at a body mass around 500 g when lipids were almost depleted (∼33 g remaining). Death occurred as body mass approached 426 g. Individuals near this body mass had lipid values permitting estimated flight ranges of 140 to 400 km, a range less than that potentially covered in 1 d by shearwaters searching for prey (440 to 1124 km d-1). Seasonal differences in body composition were most striking among body and bone marrow lipid contents, with the lowest values occurring during the die-off in fall 1997 and in fall 1998. The lack of shearwater mortality in fall 1998 may have resulted from more consistent winds that decreased flight costs and from greater availability of alternative fish prey. Our data allow estimates of usable energy stores and flight ranges based on lipid reserves in short-tailed shearwaters. Estimated flight ranges suggest that if feeding conditions are poor near Japan or near other termination points of the transequatorial migration routes shearwaters may have few reserves available to support foraging for food and starvation events may occur. Our findings suggest how their energetic strategies and migration are shaped by seasonal and annual variability of prey during transglobal movements of short-tailed shearwaters between oceanic regions
Recommended from our members
Modeling underwater visual and filter feeding by planktivorous shearwaters in unusual sea conditions
Short-tailed Shearwaters (Puffinus tenuirostris) migrate between breeding areas in Australia and wintering areas in the Bering Sea. These extreme movements allow them to feed on swarms of euphausiids (krill) that occur seasonally in different regions, but they occasionally experience die-offs when availability of euphausiids or other prey is inadequate. During a coccolithophore bloom in the Bering Sea in 1997, hundreds of thousands of Short-tailed Shearwaters starved to death. One proposed explanation was that the calcareous shells of phytoplanktonic coccolithophores reduced light transmission, thus impairing visual foraging underwater. This hypothesis assumes that shearwaters feed entirely by vision (bite-feeding), but their unique bill and tongue morphology might allow nonvisual filter-feeding within euphausiid swarms. To investigate these issues, we developed simulation models of Short-tailed Shearwaters bite-feeding and filter-feeding underwater on the euphausiid Thysanoessa raschii. The visual (bite-feeding) model considered profiles of diffuse and beam attenuation of light in the Bering Sea among seasons, sites, and years with varying influence by diatom and coccolithophore blooms. The visual model indicated that over the huge range of densities in euphausiid swarms (tens to tens of thousands per cubic meter), neither light level nor prey density had appreciable effects on intake rate; instead, intake was severely limited by capture time and capture probability after prey were detected. Thus, for shearwaters there are strong advantages of feeding on dense swarms near the surface, where dive costs are low relative to fixed intake rate, and intake might be increased by filter-feeding. With minimal effects of light conditions, starvation of shearwaters during the coccolithophore bloom probably did not result from reduced visibility underwater after prey patches were found. Alternatively; turbidity from coccolithophores might have hindered detection of euphausiid swarms from the air
Recommended from our members
Determining the body condition of short-tailed shearwaters: Implications for migratory flight ranges and starvation events
Short-tailed shearwaters Puffinus tenuirostris migrate annually from breeding areas in southeast Australia and Tasmania to the Bering Sea to feed on abundant prey aggregations, mainly euphausiids. Occasionally thousands of shearwaters die of starvation en route, within, or on return from the Bering Sea. Collection of live and dead shearwaters in the southeastern Bering Sea in 1997, 1998, and 1999 allowed us to measure seasonal changes in energy reserves during a major mortality event. As birds lost body mass, lipid mass initially decreased faster than that of pectoralis muscle, but loss of pectoralis mass increased markedly at a body mass around 500 g when lipids were almost depleted (∼33 g remaining). Death occurred as body mass approached 426 g. Individuals near this body mass had lipid values permitting estimated flight ranges of 140 to 400 km, a range less than that potentially covered in 1 d by shearwaters searching for prey (440 to 1124 km d ). Seasonal differences in body composition were most striking among body and bone marrow lipid contents, with the lowest values occurring during the die-off in fall 1997 and in fall 1998. The lack of shearwater mortality in fall 1998 may have resulted from more consistent winds that decreased flight costs and from greater availability of alternative fish prey. Our data allow estimates of usable energy stores and flight ranges based on lipid reserves in short-tailed shearwaters. Estimated flight ranges suggest that if feeding conditions are poor near Japan or near other termination points of the transequatorial migration routes shearwaters may have few reserves available to support foraging for food and starvation events may occur. Our findings suggest how their energetic strategies and migration are shaped by seasonal and annual variability of prey during transglobal movements of short-tailed shearwaters between oceanic regions. -