6 research outputs found

    Theoretical treatment of disc cutters subjected to general cutting forces

    No full text
    This paper constructs a theoretical framework to investigate the stress and deformation state within the body of a roller disc cutter from the cutter characteristics (radii of the shaft and disc and the length of the shaft), the characteristics of the cut (depth of cut), the mechanical properties of the constructive material (Poisson’s ratio and Young modulus) and the boundary conditions involved during the disc cutting process. To pursue the objectives, mathematical formulations and calculations required for the analysis of elastic variables induced in the disc and shaft parts of a roller disc cutter subjected to general cutting forces are investigated. Assuming elastic material behaviour, the disc cutter in contact with its shaft is considered as a partially loaded annulus, and the shaft inside the disc as a laterally loaded cylinder subjected to stresses corresponding to different cutting configurations. The Airy stress function, Michell’s method and Papkovich–Neuber solutions are employed in two- and three-dimensional elastic domains using a double Fourier series technique

    Dynamic Plasticity

    No full text
    corecore