4 research outputs found

    Fabrication of Highly Ordered Polymeric Nanodot and Nanowire Arrays Templated by Supramolecular Assembly Block Copolymer Nanoporous Thin Films

    Get PDF
    Realizing the vast technological potential of patternable block copolymers requires both the precise controlling of the orientation and long-range ordering, which is still a challenging topic so far. Recently, we have demonstrated that ordered nanoporous thin film can be fabricated from a simple supramolecular assembly approach. Here we will extend this approach and provide a general route to fabricate large areas of highly ordered polymeric nanodot and nanowire arrays. We revealed that under a mixture solvent annealing atmosphere, a near-defect-free nanoporous thin film over large areas can be achieved. Under the direction of interpolymer hydrogen bonding and capillary action of nanopores, this ordered porous nanotemplate can be properly filled with phenolic resin precursor, followed by curation and pyrolysis at middle temperature to remove the nanotemplate, a perfect ordered polymer nanodot arrays replication was obtained. The orientation of the supramolecular assembly thin films can be readily re-aligned parallel to the substrate upon exposure to chloroform vapor, so this facile nanotemplate replica method can be further extend to generate large areas of polymeric nanowire arrays. Thus, we achieved a successful sub-30 nm patterns nanotemplates transfer methodology for fabricating polymeric nanopattern arrays with highly ordered structure and tunable morphologies

    Multiscale Modeling of Complex Dynamic Problems: An Overview and Recent Developments

    Get PDF
    Multiscale modeling aims to solve problems at the engineering (macro) scale while considering the complexity of the microstructure with minimum cost. Generally, two scales are considered in multiscale modeling: small scale, which is designed to capture the mechanical phenomena at the atomistic, molecular or molecular cluster level, and large scale which is connected to continuous description. For each scale, well-established numerical methods have been developed over the years to handle the relevant phenomena. As a first part of this paper, the most popular numerical methods, used at different scales, as well as the coupling approaches between them are classified, according to their features and applications, so that the place of those used in multiscale modeling can be distinguished. Subsequently, the class of concurrent discrete–continuum coupling approaches, which is well adapted for dynamic studies of complex multiscale problems, is reviewed. Several techniques used in this class are also detailed. Among them, the bridging domain (BD) technique is used to develop a discrete–continuum coupling approach, adapted for dynamic simulations, between the Discrete Element Method and the Constrained Natural Element Method (CNEM). This approach is applied to study the BD coupling parameters in dynamics. Several results giving more light on the setting of these parameters in practice are obtained
    corecore