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Abstract Multiscale modeling aims to solve problems at the engineering (macro) scale while consid-

ering the complexity of the microstructure with minimum cost. Generally, two scales are considered

in multiscale modeling: small scale, which is designed to capture the mechanical phenomena at the

atomistic, molecular or molecular cluster level, and large scale which is connected to continuous de-

scription. For each scale, well-established numerical methods have been developed over the years to

handle the relevant phenomena. As a first part of this paper, the most popular numerical methods,

used at different scales, as well as the coupling approaches between them are classified, according

to their features and applications, so that the place of those used in multiscale modeling can be

distinguished. Subsequently, the class of concurrent discrete-continuum coupling approaches, which

is well adapted for dynamic studies of complex multiscale problems, is reviewed. Several techniques

used in this class are also detailed. Among them, the bridging domain (BD) technique is used to de-

velop a discrete-continuum coupling approach, adapted for dynamic simulations, between the Discrete

Element Method (DEM) and the Constrained Natural Element Method (CNEM). This approach is

applied to study the BD coupling parameters in dynamics. Several results giving more light on the

setting of these parameters in practice are obtained.
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1 Introduction

Numerical simulation has increasingly become a very important approach for solving complex practi-

cal problems in engineering and science. With the help of the increasing computers power, this modern

numerical approach attacks the original problem in all its detail without making too many assump-

tions, rather than adopting the traditional theoretical practice using assumptions and approximations

to simplify the studied problem. It plays a valuable role in providing validation for theories, offers

insights to the experimental results and assists in the interpretation or even the discovery of new

phenomena, which can be of different scales. Typically, four scales can be distinguished in the context

of numerical simulation.

– The nanoscopic (or atomic) scale (∼ 10−9 m), where phenomena related to the behavior of electrons

become significant. At this scale, the interaction between particles (electrons, atoms, etc) is directly

dictated by their quantum-mechanical state.

– The microscopic scale (∼ 10−6 m), where phenomena related to the behavior of atoms are con-

sidered. The interaction between atoms is governed by empirical interatomic potentials, which are

generally derived from Quantum Mechanical computations. The classic Newtonian mechanics is

used to compute the atoms displacements and rotations.

– The mesoscopic scale (∼ 10−4 m), where phenomena related to lattice defects are considered. At

this scale, the atomic degrees of freedom are not explicitly treated, and only larger-scale entities

(clusters of atoms, clusters of molecules, etc) are considered. The interaction between particles are

also described by the classic Newtonian mechanics.

– The macroscopic scale (∼ 10−2 m), where macroscopic phenomena which can be described by

Continuum Mechanics are considered. At this scale, the studied physical systems are regarded as

continua, whose the behavior is described by constitutive laws.

At each scale, several numerical methods have been developed to deal with the relevant phenomena.

These methods can be classified into: discrete methods (DMs) and continuum methods (CMs). The

first class is based on discrete mechanics and typically covers the first three scales: quantum mechanical

methods (QMs) for nanoscopic scale analyses, atomistic methods (AMs) for microscopic scale analyses

and mesoscopic discrete methods (MDMs) for mesoscopic scale analyses. This class generally provides

very accurate results, but it is very time-consuming and can only be used for small physical systems.

The class of continuum methods (CMs) is based on Continuum Mechanics and is rather adapted for

problems at the macroscopic scale. Otherwise, additional handling is generally required to treat fine

scale phenomena. Although less accurate than the discrete methods, this class is relatively inexpensive

and can be applied on large systems.

The challenge in modern material science and engineering simulations is that real materials usually

exhibit multiscale phenomena, which require on one scale a very accurate and computationally ex-

pensive description and on another scale coarse description to avoid prohibitively large computations.

Since none of the DMs and CMs methods alone is able to describe the entire system, it would be
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beneficial to develop coupling approaches which combine different methods at different scales, such

that the computation effort can be distributed as needed. This has led to the development of various

multiscale coupling approaches, able to predict the mechanical behavior of materials across all rele-

vant scales, while keeping the accuracy of the individual approaches in their respective scales. These

approaches can conceptually be classified into three categories: hierarchical approaches, concurrent

approaches and hybrid hierarchical-concurrent approaches. The first category attempts to piece to-

gether a hierarchy of computational approaches, such that the large scale models use information

obtained from the fine scale models. This approach can be applied for problems in which the differ-

ent scales are decoupled or weakly coupled. The second category aims to couple methods at different

scales in a combined model using some coupling procedure, such that the different scales communicate

instantly during computation. This category is adapted for problems in which the different scales are

strongly coupled, such as complex dynamic problems. The third category combines the features of

the first two classes. A hierarchical modeling is used as long as the fine scale information is available,

when this is no longer possible, a concurrent modeling takes place. From these categories, the con-

current coupling approaches seem more adapted for complex dynamic mechanical problems, which

are the general framework of this review. Indeed, such problems generally involve highly dependent

multiscale phenomena. The concurrent coupling approaches can be of different types: discrete-discrete

coupling approaches, continuum-continuum coupling approaches and discrete-continuum coupling ap-

proaches. The latter present the advantage of combining dissimilar methods, which allows to obtain

a good compromise between accuracy, efficiency and realistic description. This is why the concurrent

discrete-continuum coupling approaches have become increasingly used in the literature [18,45,46,

112].

After reviewing the different classes of numerical methods, the present paper gives a birdseye view

of the techniques commonly used in the concurrent coupling of discrete and continuum approaches.

From these techniques, the bridging domain (BD) is of particular interest for dynamic studies. As will

be seen later, this technique can avoid spurious wave reflections without any additional filtering or

damping, provided that its parameters are well adjusted. Several studies of these parameters, using 1D

static models, can be found in the literature [10,45,46]. Recently, these studies have been extended,

in a previous paper [57], to dynamics using 3D models. The present paper attempts to give more light

on the setting of these parameters for dynamic studies.

This paper is organized as follows. In Section 2, the numerical methods most commonly used at

different scales are classified according to their underlying physics and applications. This is followed by

a classification of the coupling approaches between these methods so that the place of the concurrent

coupling approaches can be seen. In Section 3, the techniques commonly used for concurrent coupling

of discrete and continuum methods are reviewed. Among these techniques, the bridging domain (BD)

technique, which presents a good candidate to study dynamic problems, is studied in Section 4, so as

to corroborate the previous studies on the BD parameters and to give more light on their practical

setting. This study is performed using DEM-CNEM coupling approach recently developed between
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Discrete Element Method (DEM) and Constrained Natural Element Method (CNEM) [57]. Section 5

presents some conclusions.

2 Classification of numerical methods

As mentioned in the introduction, several numerical methods used in Computational Mechanics can

be found in the literature. These methods can mainly be classified into discrete methods (DMs),

continuum methods (CMs). The main features and specificities of these two classes are reviewed

in this section. Subsequently, the different types of coupling approaches between these methods are

discussed so as to adequately position the notion of multiscale modeling, which is the scope of this

review.

2.1 Discrete methods

The discrete methods (DMs), such as Molecular Dynamics (MD) [4,5] and Discrete (or Distinct)

Element Method (DEM) [31], are a family of numerical methods consisting in simulation of a set of

rigid (or pseudo-deformable) bodies in interaction with each other by contact laws. Depending on

the analysis scale, one can distinguish quantum mechanical (or ab initio) methods (QMs), atomistic

methods (AMs) and mesoscopic discrete methods (MDMs) (Figs. 1 and 2).

2.1.1 Quantum mechanical methods

The quantum mechanical (QMs) methods are used for material simulations at the atomic scale

(∼ 10−9m), in which the electrons are the players (Fig. 2). They consist in solving the electronic

Schrödinger equation for atoms and molecules, taking into account the electronic structure of each

atom. In other words, the interaction laws between atoms are directly dictated by their quantum

mechanical state. Examples of QMs methods are Quantum Monte Carlo (QMC) [41] and Quantum

Chemistry (QC) [101], which are very accurate but computationally too demanding to handle more

than a few tens of atoms. Other QMs methods are Density-Functional Theory (DFT) and Local

Fig. 1: Classification of discrete methods
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Fig. 2: Characteristic length and time scales for numerical methods

Density Approximation (LDA) [50,86]. These methods are less accurate than QMC or QC, but they

can be readily applied to systems containing several hundred atoms for static properties. Dynamic

simulations with DFT and LDA are usually limited to timescales of a few picoseconds. Overall, the

QMs methods are generally very accurate since they hold out the possibility of performing simulations

without prior need for tuning. However, they are extremely expensive and can only be applied on very

small domains of a few nanometers size.

2.1.2 Atomistic methods

The atomistic methods (AMs) are used for material simulations at the microscopic scale (∼ 10−6 m),

where atoms are the players (Fig. 2). The interaction laws between atoms can be described by empirical

interatomic potentials that encapsulate the effects of bonding (mediated by electrons) between them.

These potentials can be obtained from fitting material properties from experimental data or quantum

mechanical calculations. They may depend on the distance between the atoms, angles between bonds,

angles between planes, etc. Equation (1) gives the general form of the interatomic potential:

U(r1, r2, ..., rN ) =
∑

i

U1(ri) +
∑

i,j, j>i

U2(ri, rj) +
∑

i,j,k, k>j>i

U3(ri, rj , rk) + ... (1)

where N is the total number of particles (atoms), Ui is the i-particle part of U , ri the vector position

of a particle i. Examples of AMs methods are Molecular Mechanics (Statics) (MM) [48], Molecular

Dynamics (MD) [4,5] and Monte Carlo (MC) [75]. Although they are less accurate than the QMs

methods, the AMs methods are relatively inexpensive (compared to QMs methods) and are able to

provide insight into atomic processes involving considerably large systems of up to 109 atoms [1].

Dynamic simulations with AMs methods are generally limited to timescales of a few nanoseconds,

which can be crippling for simulation of realistic mechanical problems.
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2.1.3 Mesoscopic discrete methods

To overcome the timescale limitations of the quantum mechanical and atomistic methods, another

generation of discrete methods has been developed: mesoscopic discrete methods (MDMs). These

methods can be used for material simulations at the mesoscopic scale (∼ 10−4 m), where lattice

defects such as dislocations, crack propagation, and other microstructural elements are the players.

At this scale, the system is too small to be regarded as a continuum and too large to be simulated

effectively using quantum mechanical or atomistic methods. More precisely, the mesoscopic scale can

be defined as an intermediate scale at which the microscopic phenomena (e.g. particle motion) can

be assumed in mechanical equilibrium. The MDMs can broadly be regarded as a generalization of

the atomistic methods (AMs), where more complex interaction laws are used. These laws are usually

derived by calibration or from phenomenological theories that encompass the effects of interactions

between the atoms. In the MDMs, the atomic degrees of freedom are not explicitly treated and

only larger-scale particles are modeled. The fundamental principle of dynamics (FPD) is applied to

compute the displacements and rotations of these particles. Originally, this class of methods has been

developed for problems of granular media in rocks mechanics [29]. More recently, it has been applied

to study the damage of heterogeneous media such as concrete [49] and rocks [20], but also to study

the damage of homogeneous media such as ceramics [104] and glasses [6,7,56,55]. In these studies,

the material is modeled by an agglomerate of discrete elements which interact via bilateral cohesive

links to ensure the cohesion of the medium. The cohesive links can be of different nature according

to the physical properties of the material being modeled (Fig. 3). Figure 4 illustrates an example of

a continuum modeled with MDM. Application of MDMs in continuum media simulations faces two

major challenges:

– choice of the cohesive links and identification of their microscopic parameters to ensure a correct

macroscopic behavior;

– construction of discrete domains able to take into account the structural properties of the prob-

lem domain, e.g. homogeneity and isotropy, such that the macroscopic mechanical properties are

independent of the number of discrete elements.

Several works can be found in the literature which propose solutions of these points. Among them,

one can cite the recent works of André et al. [6].

Nowadays, the MDMs present an alternative way to study physical phenomena requiring a small

scale analysis, for which the continuity assumption is no longer valid, or problems with discontinuities

that cannot be easily treated by continuum methods (CMs). They have become widely used to study

realistic complex mechanical problems, such as cracking behavior of silica glass [6,7,56,55]. The bene-

fits of these methods have attracted several researchers, and consequently several variations of MDMs

have been developed. These variations can be divided into four categories as shown in Figure 1. The

fundamental concepts of each one is briefly recalled hereafter.
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(a) Normal spring model (b) Bilateral spring model (c) Beam model

Fig. 3: Example of cohesive links used in MDMs

(a) Relaxing state (b) Loading state

Fig. 4: MDM modeling of a continuum

Lattice models In lattice models, a solid is modeled by a set of nodes connected with truss or beam

elements [93,94]. Typically, nodes have neither masses nor volumes (they do not occupy volumes).

Solving a mechanical problem with this class of discrete methods is based on the construction of a

global stiffness matrix from the local connection properties. Both regular and irregular lattices were

studied. Originally, the lattice models were used to represent elastic continuum; the equivalence was

established for both truss [51] and beam [92] elements. Later on, obvious enhancements, such as

brittle beam failure, were introduced. Lattice models nicely show the emergence of relatively complex

structural behaviors, although fairly simple formulas are used to describe the governing local processes.

The major drawback of these models is that the nodes do not have volumes, which can cause

numerical problems related to crack closure in post-fracture stage. Solutions are given to circumvent

this problem. These solutions consist in associating to each element an equivalent volume, based on

the spatial Voronoï decomposition [87] for example.

Particle models This class of methods is very close to the first discrete approach proposed in the

literature by Cundall and Strack [29,31]: Distinct (Discrete) Element Method (DEM). Contrary to

lattice models, particle models consider elements with masses and volumes. These elements often

have disc shape (in 2D) or spherical shape (in 3D): only a single parameter (the radius) is required

to determine the elements geometry and there is only one possible contact easily detectable between
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them. Consequently, computer memory requirements and processing time are minimized with these

element shapes, even when a relatively large number of elements is used. Nevertheless, discs and

spheres can roll or rotate easily. This does not reflect the expected behavior for several materials,

in the case of large shear processes for example. To solve this problem, more complex shapes such

as ellipses [105], ellipsoids [64], polygons [52] and polyhedra [30] were proposed in the literature to

provide more flexibility for element characterization in particle models.

Basically, the associated algorithm involves two stages. In the first stage, interaction forces are

computed when elements slightly interpenetrate each other. This force-interpenetration formulation

is generally referred to as a “Smooth contact” method or “force-displacement” method. Actually, the

interpenetration between discrete elements, which makes no mechanical sense, represents the relative

deformation of the elements surface layers. In the second stage, Newton’s second law is applied to

determine the acceleration of each element, which is then integrated, using “dynamic explicit” schemes,

to find the new elements velocities and positions. This process is repeated until the simulation is

achieved.

Hybrid models The features of the lattice and particle models are largely complementary. Indeed, in

lattice models, additional treatments must be made to deal with fracture problems (crack closure).

This problem is not encountered in particle models in which elements have their own volumes. How-

ever, particle methods cannot correctly model a continuum using simply disc or spherical elements,

especially when shear effects are significant. This problem can be solved using cohesive beams between

elements, such as in lattice models. The complementary advantages of these models has given rise to a

family of “hybrid” methods combining particle and lattice models, i.e. by considering sphere elements

connected with cohesive beams [44]. Interesting recent works on the Hybrid models can be found in

references [6,7,56,55].

Contact dynamics This class of methods provides an alternative approach based on a “non-smooth”

formulation of mutual exclusion and dry friction between elements [54,72,77]. It introduces the notion

of non-smooth (irregular) contact between elements which is, at present, subject of several studies.

Interpenetration between elements is prevented: no elastic contact law is used between them. There

are two main numerical integrators for these methods, which are of “dynamic implicit” type: the

event-driven integrators, also referred to as Even-Driven Method (EDM) [72], and the so-called time-

stepping integrators, also referred to as Contact Dynamics Method (CDM) [54,77]. In EDM, a collision

or “event” occurs when two rigid elements touch each other and the post-collisional and angular veloci-

ties are prescribed by a collision operator [89]. Despite being very accurate, the even-driven integrators

treat only one force at a time. Therefore, they are not well adapted for problems with many simulta-

neous contacts, as often encountered in mechanics. To overcome this limitation, Jean and Moreau [54,

78] have developed the Contact Dynamic Method (CDM) which has a specialized numerical scheme

for problems with many contacts. The governing equations are expressed as differential inclusions and

the accelerations are replaced by velocity jumps. In the generic CDM algorithm, an iterative process
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is used to compute forces and velocities. This process consists in solving a single contact problem with

all other contacts kept constant, and iteratively updating the forces until a convergence criterion is

fulfilled. Two basic kinematic constraints are used between elements in the CDM formulation:

– The Signorini conditions which state that the normal force fn is repulsive when the elements are

in contact (distance between them is zero), and fn = 0 otherwise. To deal with persistent contacts,

fn is reset to zero when no relative velocity exists between elements in contact.

– The Coulomb’s friction law, which relates the sliding velocity and the friction force ft.

These kinematic constraints can also be complemented by a “rolling friction” constraint which intro-

duces a moment resistance [21]. Within the CDM, the time resolution is much larger than the collision

characteristic time (unlike in the case of particle approaches). Instead, the time step represents a unit

of time during which collisions can occur, causing velocity jumps. Although CDM has been success-

fully used for several geomechanical problems [36], it is much more difficult to implement than lattice

and particle models. Also, the prediction of the contact forces and particle velocities in the following

step from the current configuration is very problematic and is currently the subject of several studies.

The Contact Dynamics models are generally used to study quasi-static problems or problems with

relatively low dynamic effects. This class of methods is perfectly suitable to study mechanical problems

of granular mechanics. However, in the case of continuum media, the use of models based on regular

or “smooth” interaction laws seems to be advantageous since the elasticity is naturally taken into

account by these interaction laws.

2.2 Continuum methods

The continuum methods (CMs), such as Finite Element Method (FEM) [120,121,122] and Smoothed

Particle Hydrodynamics (SPH) [67,71], are used for material simulations at the macroscopic scale

(∼ 10−2 m), where continuum fields (e.g. density, temperature, displacement, stress, etc) are the

players. The behavior of the studied domain, which is viewed as a continuum and completely filling

the space it occupies, is governed by constitutive laws stemming from Continuum Mechanics. These

constitutive laws are usually formulated so that they can capture the effects of the microstructure

and lattice defects on materials properties. Solving mechanical problems using the CMs methods is

typically a two-step process. In the first step, the continuum problem domain is approximated by

a finite number of discrete components made up of reference points or nodes. Then, the continuous

governing equations are changed into a system of algebraic equations. Solving this system gives the

solutions at the reference points. For other points in the occupied space, the field variables can be

approximated by interpolation or averaging (in the case of SPH) from the solutions at the reference

points.

The CMs methods are well adapted to simulate macroscopic physical phenomena (having length

scales much greater than the interatomic distance), in which the continuity assumptions are valid and

remain valid during calculation. However, they are less suitable to study problems with occurrence of
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discontinuities, such as wear, fracture and abrasion problems. Indeed, additional treatments must be

considered to deal with the new discontinuity surfaces. Compared to the discrete methods, the contin-

uum methods are generally much less expensive. Consequently, they have become the most commonly

used in Computational Mechanics and have been widely applied to various area of Computational

Solid Mechanics (CSM) and Computational Fluid Dynamics (CFD). This resulted in development of

a wide variety of continuum methods which can be divided into two classes: grid-based methods and

meshless methods (Fig. 5). The main features of each class are reviewed hereafter.

2.2.1 Grid-based methods

In the grid-based methods the spatial domain is often represented by discretized elements. These

elements are called “meshes” in the case of Finite Element Method (FEM) [122], grids in the case of

Finite Difference Method (FDM) [98] and volumes or cells in the case of Finite Volume Method (FVM)

[108]. The terminologies of grids, volumes, cells, and elements carry different physical meanings linked

to physical problems. However, all of them can be termed meshes according to the following definition.

A mesh, in the broadest sense of the word, is defined as an open space or interstice between the strands

of a network which is formed by connecting nodes in a predefined manner. The key here is that, in

the grid-based methods, the mesh must be predefined to provide a certain relationship between the

nodes. This forms the formulation basis of this class of methods. Based on a properly predefined mesh,

complex ordinary differential or partial differential governing equations can be approximated by a set

of algebraic equations for each discretized element (mesh). The system of algebraic equations for the

whole problem domain can be formed by assembling the elementary algebraic equations for all the

meshes.

There are two main frames to describe the governing equations of mechanical problems: Lagrangian

description and Eulerian description. The former, also called material description, is a way to look at

material motion where the observer follows an individual material point as it moves through the space

and time. The latter, also called spatial description, is another way to look at material motion where

the observer focuses on a specific space position through which the material passes over time. The

use of one or other of these descriptions leads to quite different governing equations. The difference

between them arises from the definition of the total time derivative which is defined, in the case of

Fig. 5: Classification of continuum methods
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Eulerian description, as the sum of the local time derivative and the convective derivative (2):

d

dt
︸︷︷︸

total time derivative

=
∂

∂t
︸︷︷︸

local time derivative

+ V .∇
︸︷︷︸

convective derivative
(2)

where V represents a velocity vector and ∇ denotes the vector differential operator (gradient). Accord-

ing to the used description, the grid-based methods can be divided into three subclasses: Lagrangian

methods, Eulerian methods and Combined Lagrangian-Eulerian methods.

Lagrangian methods Lagrangian methods which are typically represented by the FEM [122] are based

on the Lagrangian description. In this class of methods, the grid or mesh is attached to the material

in the entire computation process, and moves with it (Fig. 6).

Fig. 6: Lagrangian mesh for a rabbit simulation

Each node in the mesh follows the material path at the grid point. As a result, the mesh elements

can be deformed during the simulation process. When the domain deforms, the mesh elements deform

accordingly. Mass, momentum and energy are transported with the motion of the mesh. Because the

mass within each cell (or element) remains constant, no mass flux is allowed through the mesh cells

boundaries. The Lagrangian methods present several advantages:

– It is very easy to treat the boundary conditions at free surfaces, moving boundaries and material

interfaces. Indeed, they are automatically imposed, tracked and determined simply by placing

some grid nodes along the boundaries and the material interfaces.

– Complex geometries can be conveniently studied using an irregular mesh.
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– Meshing is only required within the problem domain (no additional grids are required beyond it, as

will be seen for Eulerian methods). Therefore, Lagrangian methods are computationally efficient.

– Since the mesh is attached to the material, the entire time history of all field variables at a specific

material point can easily be obtained during the simulation.

– In the Lagrangian description, the total time derivative is the same that the local time derivative.

Therefore, no convective terms exist in the associated governing equations. This makes Lagrangian

simulations simpler and faster as no computational efforts are required to treat the convective

terms.

Due to these advantages, Lagrangian methods have become very popular to simulate problems of

Computational Solid Mechanics (CSM), where deformations are relatively small. However, application

of these method to solve problems with large deformations presents a huge challenge. Indeed, in such

problems, the mesh can become extremely distorted, and stability as well as convergence difficulties

can arise, leading to computation breakdown. The accuracy of the formulation and consequently the

solution can be severely affected. Also, the time step, which is controlled by the size of the smallest

element grid, can become too small to be efficient for computation.

A solution to overcome these problems is to re-mesh (rezone) the problem domain or simply

the regions where the initial mesh is hugely distorted. This technique involves overlying of a new

(undistorted) mesh on the old one. The computation is then resumed on the new mesh. The field

variables can be approximated at the new grid nodes via mass, momentum and energy transport

using an Eulerian description. Despite the popularity of the rezoning techniques to simulate large

deformation problems, they suffer from several difficulties. Indeed, rezoning procedure can be tedious

and time-consuming. Besides, the transport of the field variables from old to new mesh is generally

accompanied by material diffusion which can lead to a loss of the material history [19].

Eulerian methods In Eulerian methods, the mesh is fixed on the space occupied by the simulated

object which can move across the fixed mesh cells (grids) as shown in Figure 7. All the mesh cells

as well as the associated nodes remain fixed in the space and do not move with the material moving

across the mesh. The flux of mass, momentum and energy across mesh cell boundaries is simulated

to compute the distribution of different field variables in the problem domain. As a result, the shape

and the volumes of the grid cells remain constant during the entire computation process. Therefore,

simulation of problems with large deformations is possible with Eulerian methods. Since they do

not induce any cells deformation and thus do not cause the same kind of numerical problems as in

the Lagrangian methods. For these reasons, Eulerian methods are dominant in Computational Fluid

Dynamics (CFD) problems and problems with large deformations such as explosion, high velocity

impacts (HVI), etc.

Despite the great success of Eulerian methods, there are many disadvantages which limit their

application, from which one can cite:

– Since the Eulerian methods simulate the flux of mass, momentum and energy across mesh cells

boundaries, it is very difficult to get out the time history of field variables at a fixed material point.
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Fig. 7: Eulerian mesh for a rabbit simulation

– Eulerian methods require meshing not only within the problem domain, but also beyond it (Fig.

7). The mesh must be large enough to cover the area through which the simulated object can

move. Therefore, coarse grid is sometimes recommended for computational efficiency, which can

affect the solution accuracy.

– The free surfaces, moving and deformable boundaries and moving material interfaces are difficult

to be determined accurately.

– It is difficult to treat irregular and complicated geometries of materials. Generally, tedious mesh

generation procedure to convert the irregular geometry of the problem domain into a regular

computational domain is necessary. This can become sufficiently expensive to be efficient. Efforts

in this direction are still ongoing.

Combined Lagrangian-Eulerian methods The features of the Lagrangian and Eulerian methods are

largely complementary. This has led to the development of several approaches involving in the same

time the Lagrangian and Eulerian descriptions. The Coupled Eulerian Lagrangian (CEL) [38,73,113]

and the Arbitrary Lagrangian Eulerian (ALE) [19,99] can particularly be cited. The CEL approach

consists in employing simultaneously both the descriptions in separate (or with overlap) regions of the

problem domain. The Lagrangian region continuously interacts with the Eulerian one through a cou-

pling module allowing for exchange of computational information. The ALE approach is conceptually

close to the rezoning techniques for Lagrangian methods. In this case, the mesh moves independently

of the material so as to minimize the mesh distortion. In the ALE approach, Lagrangian motion is

firstly computed at each time step, followed by possible rezoning step in which the mesh is either

rezoned to the original shape or rezoned to some more advantageous shape (between the previous

shape and the current one).
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The combined Lagrangian-Eulerian methods are very promising and have received much research

interest. However, they are generally difficult to implement. Besides, unexpected termination of the

computation process is often encountered, due to a highly distorted Lagrangian element or a very

small Eulerian cell. Table 1 presents a comparison between this category and the two first ones.

Lagrangian methods Eulerian methods Combined L-E

Discretization Mesh attached to material Mesh fixed in the space Updated mesh

Examples

FEM [120,122,121] FVM [108] CEL [38,73,113]

X-FEM [76] FDM [98] ALE [99]

BEM [47]

Track Moving of material points Mass, momentum and

energy flux accross mesh

cells boundarries

Combined solution

Implementation ⋆⋆⋆ ⋆⋆⋆ ⋆

Time history at

material points

⋆⋆⋆ ⋆ ⋆⋆

Boundaries and

interfaces

⋆⋆⋆ ⋆ ⋆⋆

Complex

geometries

⋆⋆⋆ ⋆ ⋆⋆

Large

deformation

⋆⋆ ⋆⋆⋆ ⋆⋆

Discontinuities ⋆⋆ ⋆ ⋆

Computation

robustness

⋆⋆⋆ ⋆⋆ ⋆⋆

⋆⋆⋆: Good/Easy ⋆⋆: Intermediate ⋆: Bad/Difficult

Table 1: Comparison of grid-based methods

2.2.2 Meshless methods

Despite the great success of the grid-based methods in both CSM and CFD, their disadvantages have

pushed researchers to seek for new numerical methods. One important goal of the initial research is to

modify the internal structure of the grid-based methods to become more adaptive and more robust.

Additional effort was given to problems which cannot easily be treated by this class of methods, such

as problems with moving boundaries (for Eulerian methods) and large deformation (for Lagrangian

methods). Such an effort has given rise to the next generation of computational methods: the meshless

methods. The main key of the meshless methods is to provide accurate and stable solutions for integral

equations or partial differential equations (PDE) with a set of arbitrary distributed nodes (or particles)

without any connectivity between them. Contrary to the grid-based methods, this class of methods

normally do not require any predefined mesh to establish the system of algebraic equations for the

whole problem domain. Instead, only a set of nodes scattered within the problem domain and along
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the boundaries are used to represent the simulated geometry (Fig. 8). In such a representation, no

connectivity between nodes is required. The ideal requirements of the meshless methods are:

– non-necessity of a predefined mesh, at least in field variable interpolation;

– non-necessity of a predefined mesh at all throughout the computation process.

However, the meshless methods developed so far are not really ideal considering these two points. For

example, some meshless methods require background cells (mesh) to derive the system of algebraic

equations. The Element Free Galerkin (EFG) method [13] and the Meshless Local Petrov-Galerkin

(MLPG) method [8], which use background cells for integration of system matrices derived from the

weak formulation, belong to this category.

In the literature, one can find numerous meshless methods, some of which share several common

features. It should be noted that most of the meshless methods are based on the Lagrangian descrip-

tion. Therefore, construction of shape functions is necessary before or during the computation process.

These shape functions will next be used to approximate the field variables at any point x within the

problem domain as follows (3):

u(x) =

n∑

i=0

φi(x)ui (3)

where u is the field variable to be approximated (e.g. displacement), n is the number of all the nodes,

ui is the nodal field variable at the node i, and φi is the shape function associated to the node

i. According to the type of shape functions, the meshless methods can be classified into two main

categories: approximation methods and interpolation methods. The main features of each category

are detailed hereafter.

Fig. 8: Meshless discretization for rabbit simulation
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Approximation methods Contrary to the Lagrangian grid-based methods, the shape functions in mesh-

less methods are constructed for the nodes (not for element grids). In the case of approximation

methods, these functions generally do not satisfy the Kronecker delta function property (4) at the

nodes.

φi(xj) =

{

1 i = j

0 i 6= j
(4)

In other words, an approximated field variable based on these functions, called approximation shape

functions, does not necessary pass through the nodal values (u(xi) 6= ui).

The first method developed in this category is the famous Smoothed Particle Hydrodynamics

(SPH) method [67,69,71,88]. This method was originally developed to model astrophysical phenom-

ena, and later it has been widely extended for application to problems of continuum solid and fluid

mechanics [71]. The SPH method and its different variants, such as Corrective Smoothed Particle

Method (CSPM) [67] and Discontinuous Smoothed Particle Hydrodynamics (DSPH) [67], are the

major types of approximation methods, and have been incorporated into many commercial codes.

Several other methods belonging to this category can be found in the literature. Among them, one

can cite the Generalized Finite Difference Method (GFDM) [65], Element Free Galerkin Method

(EFGM) [13], Reproducing Kernel Particle Method (RKPM) [61], etc. Several advantages have made

the approximation methods very attractive:

– Since no predefined grid is required, approximation methods are able to deal with problems in-

volving extremely large deformations.

– Approximationmethods are more adapted than the Eulerian grid-based methods to study problems

with free surfaces, deformable boundary and moving interfaces.

– The approximation methods are more adapted than the grid-based methods to study fracture of

materials. Indeed, they do not use any kind of mesh which can affect the cracking mechanisms.

– Approximation methods are more adapted than grid-based methods to treat complex geometries

which are represented only by a set of scattered nodes with no connectivity between them.

– Applications of this class of methods are very wide, ranging from microscale to macroscale and

even to astronomical scale, and from discrete systems to continuum systems.

– Due to intensive research efforts, several approximation methods, such as SPH, are quickly ap-

proaching their mature stage.

– The accuracy of solutions is very weakly affected by the relative positions of the nodes. Hence, it

is very easy to add or remove nodes. This point is particularly attractive to define an adaptive

refinement strategy for problems with localization.

However, the approximation methods have several drawbacks related to the imposition of boundary

conditions and implementation requirements:

– To impose essential boundary conditions in a straightforward way as in FEM, it is necessary that:

(i) the approximated field variables pass through the nodal value (interpolation shape functions)

and (ii) the influence of the internal nodes vanishes at the border of the problem domain (linear
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shape functions at the border). Since, for approximation methods, generally any of these conditions

is satisfied, it is not easy to impose essential boundary conditions. Therefore, special techniques are

required to overcome this problem. In the literature, one can find several works on this subject and

several techniques have been proposed. Among them, one can cite the Lagrange multiplier method

[13], Penalty method [118] and the introduction of singular weight functions [59]. But, in most

cases, these techniques are tedious and involve additional computational efforts which can limit

the application of these methods to problems with complex/moving interfaces and boundaries.

– The second drawback of the approximation methods is related to the numerical integration. Ac-

tually, almost all the shape functions used in meshless methods are rational (not polynomial).

This makes the Gauss integration schemes not well adapted for this class of methods. Dolbow et

al. [35] have demonstrated that, using these integration schemes, a great number of Gauss points

is required which can induce an extensive additional cost of computation. Concerning the other

popular integration technique, Direct Nodal Integration, Chen et al. [26] have demonstrated that

the application of this technique can involve numerical instability problems. To overcome these

problems, several solutions have been proposed in the literature, such as the Stabilized Conform-

ing Nodal Integration scheme [43,26]. However, they are generally less accurate than the Gauss

integration schemes for Lagrangian grid-based methods.

– Another drawback of this class of methods is related to the definition of the influence area of

the particles (nodes), called support domain or also influence domain. In most cases, the support

domain of a particle is taken as a sphere or parallelepiped centered on the particle. As discussed in

several previous works [67,69], this support should contain a sufficient number of neighbor particles

for computation stability and then be sufficiently wide. However, a very wide support domain can

affect the accuracy of the solutions. The choice of the size of the support domain is not trivial and

represents, at present, an open question [60].

– As reported in several previous works [11,60], the application of approximation methods to non-

convex geometries, e.g. the presence of concave boundaries, cavity or cracks, is very challenging.

This is mainly due to difficulties to define the support domain in the vicinity of the concave

borders. In this case, the support domain can contain nodes which are not really neighbors, e.g.

nodes on opposite sides of a crack.

– Finally, compared to Lagrangian grid-based methods, approximation methods generally leads to

poor and inaccurate solutions. The accuracy problem is much more amplified in the vicinity of the

border of the problem domain.

Despite all the advantages of the approximation methods (meshless methods), the different drawbacks

of these methods have limited their application to several mechanical problems.

Interpolation methods To overcome the limitations of the approximation methods, another genera-

tion of meshless methods have been developed: interpolation methods. In this generation, the field

variables are approximated using interpolation shape functions, verifying the Kronecker delta function

property (4) at the nodes. In other words, the approximated field variables pass through the nodal
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values (u(xi) = ui). The first interpolation meshless method that has been developed is the Natural

Element Method (NEM) [22,107]. In this method, the interpolation shape functions are constructed

based on the notion of Natural Neighbor (NN) interpolation. The NN interpolation is defined as a

multivariate data interpolation scheme [97], which has primarily been used in data interpolation and

modeling of geophysical phenomena. It relies on the concepts of Voronoï diagrams [109] and Delaunay

tessellations [32], which are widely used in computational geometry, to construct the shape functions

(called NN shape functions). With this type of interpolation, the NEM method has overcome most

of the difficulties encountered with the earlier generation of meshless methods, such as definition of

the support domains of the nodes. However, application of this method for non-convex geometries

remains difficult. In effect, the NN shape functions are not strictly linear over non-convex boundaries,

which makes difficult the imposition of Dirichlet boundary conditions on such boundaries (the test

functions do not vanish over non-convex boundaries). This is because NEM is closely related to the

convex hull of a given set of points.

Recently, Cueto et al. [27,28] have proposed an extension of NEM, called α-NEM, based on the

concept of α-shapes or α-complexes, which are widely used in science visualization to give a shape

to a cloud of points. The use of α-shapes in the context of NEM allows the construction of models

entirely in terms of nodes and also ensures the linear precision of the shape function even over non-

convex boundaries. This is particularly true in the case of non-strongly non-convex domains. Indeed

as mentioned by Cueto et al. [27,28], the α-shapes used in such a method fail to ensure the linearity

of the shape functions over highly non-convex boundaries (Fig. 9), e.g. around a crack tip. α-NEM

is therefore limited to non-strongly concave geometries. Otherwise, the same problem related to the

imposition of Dirichlet boundary conditions in the NEM, is raised.

(a) Convex (b) Non-convex (c) Strongly non-convex

Fig. 9: Different geometries of problem domains

More recently, Yvonnet et al. [115,116] have proposed another extension of NEM to ensure the

linearity of the shape functions over all types of boundaries (even strongly non-convex): the Con-

strained Natural Element Method (CNEM). This method can be regarded as another extension of the

NEM which retains its attractive properties and overcomes the difficulties related to its application

for strongly non-convex domains. The main originality of this approach is the introduction of a visi-

bility criterion [115,116] in the NEM to select the natural neighbors of the nodes and construct the

interpolation. A modified so-called constrained Voronoï diagram is introduced for the computation of
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the shape functions. As a meshless method, CNEM has practically all the advantages of this class of

methods. Also, with the introduction of the visibility criterion, it overcomes almost all its drawbacks.

Table 2 presents a comparison between the interpolation and approximation methods.

Subclasses Approximation methods Interpolation methods

Discretization Scattered nodes attached to

the material

Scattered nodes attached to

the material

Examples

SPH [67,71] NEM [22,107]

PUFEM [74] α-NEM [27,28]

EFGM [13] CNEM [115,116]

MLPG [8]

RKPM [61]

PIM [66]

FPM [80,81,82]

Track Movement of material points Movement of material points

Implementation ⋆⋆⋆ ⋆⋆

Time history at

material points

⋆⋆ ⋆⋆⋆

Boundaries and

interfaces

⋆⋆ ⋆⋆⋆

Complex

geometries

⋆⋆ ⋆⋆⋆

Large

deformation

⋆⋆⋆ ⋆⋆⋆

Discontinuities ⋆⋆ ⋆⋆

Computation

robustness

⋆⋆ ⋆⋆⋆

⋆⋆⋆: Good/Easy ⋆⋆: Intermediate ⋆: Bad/Difficult

Table 2: Comparison of meshless methods

2.3 Coupling methods

As seen above, numerous numerical methods can be found in the literature. These methods can be

classified into discrete methods and continuum methods. The first class is used to study phenom-

ena ranging from nanoscale to mesoscale. The second class is generally used to study macroscopic

phenomena, where the mechanical behavior can be described by Continuum Mechanics. The features

of the different methods of these classes are largely complementary. This suggests that it would be

computationally beneficial to combine two or more methods from these classes so as to strengthen

their advantages and to avoid their drawbacks. This idea has attracted several researchers and sev-

eral coupling methods have been developed. According to the analysis scale of the involved methods,
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two types of coupling approaches can be distinguished: monoscale coupling methods and multiscale

coupling methods.

2.3.1 Monoscale coupling methods

The monoscale coupling methods are generally used to couple two or more continuum methods to

study multiphysics problems, in which different continuum physical phenomena interact with each

other. Among the multiphysics problems that can be treated by this type of coupling methods, one

can cite the problems of dynamic fluid-structure interaction and high velocity impacts. Several works

on the multiphysics coupling methods can be found in the literature. An example is the work of Fourey

et al. [42], who have developed a coupling method between the Smoothed Particle Hydrodynamics

(SPH) and the Finite Element Method (FEM) to simulate violent fluid-structure interaction. The

SPH method is applied to solve the Navier–Stokes equations in the fluid region, whereas, the FEM

method is used to describe the mechanical behavior of the studied structure. Another example is

the FEM-SPH coupling approach developed by Zang et al. [117] to simulate high velocity impact

of windshield. The SPH approach was only applied in the impact region to better characterize the

fragmentation mechanisms. The monoscale coupling methods can also be applied to overcome the

limitations of the approximation methods in the vicinity of the border of the studied domain. In such

a coupling, an approximation method (e.g. SPH) is generally coupled to a Lagrangian grid-based

method (e.g. FEM). This last method (Lagrangian grid-based method) is only used in the regions of

application of the essential (displacement) boundary conditions, which cannot correctly be treated by

approximation approaches. The remaining estate is modeled by the approximation method to better

characterize the complex phenomena (e.g. large deformations) that can occur.

The monoscale coupling methods are beyond the scope of this review, which attempts to give light

on the multicale modeling of mechanical problems. Therefore, it will not be examined here.

2.3.2 Multiscale coupling methods

The multiscale coupling methods are used to couple approaches at different scales. This type of cou-

pling methods is applied to study problems involving on one scale phenomena that require very ac-

curate and computationally expensive description, and on another scale phenomena for which coarser

description is sufficient and, in fact, necessary to reduce the computation time. According to the na-

ture of the coupled approaches, two cases can be distinguished: discrete-discrete coupling approaches

(e.g. MD-DEM) and discrete-continuum coupling approaches (e.g. DEM-FEM). The discrete-discrete

coupling approaches, in which only discrete methods at different scales are involved, are generally very

expensive and can only be used to study small systems. The discrete-continuum coupling approaches,

in which a combination of discrete and continuum methods are connected together, are less expensive

and then more suitable to study realistic engineering applications.

In many mechanical problems, the notion of multiscale modeling arises quite naturally. In effect,

the behavior of materials at the macroscopic scale, which is the scale of interest for technological
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applications, is determined by the microscopic interactions between atoms. This is why such a notion

has become a special area of interest for many scientists, and then several multiscale coupling methods

have been developed. These methods can mainly be divided into three classes: hierarchical, concurrent

and hybrid hierarchical-concurrent multiscale coupling methods. It should be noted that there already

exist a few review papers on multiscale modeling [70,114], which use other classifications. In this paper,

a three-class classification is proposed because it seems necessary and sufficient to include the main

multiscale coupling approaches.

Hierarchical couping methods The hierarchical coupling methods are the most widely used and com-

putationally the most efficient. They are also referred in the literature to as sequential, serial, implicit,

or message passing methods. These methods aim to piece together a hierarchy of numerical approaches

in which the coarse scale models use information obtained by more detailed fine scale models. The

homogenization methods for multi-phase elastic heterogeneous media are typical examples of hierar-

chical coupling methods. In these methods, the response of a representative volume element at the fine

scale is first computed over a range of expected inputs, and from this, a stress-strain law is extracted

which can be used at a coarser scale to describe the mechanical behavior of the homogenized material.

Other examples of hierarchical coupling approaches include almost all the Molecular Dynamics (MD)

methods whose underlying potentials are derived from Quantum mechanical (QM) calculations.

The hierarchical technique is generally well suited for problems in which the different analysis

scales are decoupled or weakly coupled. Also, it can be used when the large scale variations appear

homogeneous and quasi-static from the fine scale point of view. However, application of this technique

on nonlinear mechanical problems presents major challenges, and in some instances is invalid (i.e.

failure problems [12]).

Concurrent coupling methods The concurrent coupling methods consist in linking numerical ap-

proaches having different scales together in a single combined model, such that the fine scale model

communicates directly and instantly with the coarse scale model though some coupling procedure.

These methods are also referred to as parallel or explicit coupling methods. Both compatibility and

momentum balance are enforced across the interface between the coupled models. This type of cou-

pling methods is well suited to study multiscale problems in which the behavior at each scale depends

strongly on what happens at the other scale. Several works on the concurrent coupling methods can be

found in the literature [9,10,14,18,23,40,45,46,58,57,112]. A common feature of these works is that

the problem domain is often partitioned into several subdomains characterized by different scales and

physics. The challenge that arises here is how to ensure a smooth coupling between these subdomains.

To address this issue, several techniques have been developed. The main of these techniques will be

reviewed in more detail in section 3.

A variation of concurrent coupling methods, generally referred to as semiconcurrent method, is

that in which the coupled models run together and communicate instantly with each other but not
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intimately coupled. Compatibility and momentum balance are only satisfied approximately. The ad-

vantages of this approach lie in the fact that the coupled models can be computed by separate software,

which can avoid numerical problems related to rapid change in element size. The FE2 multiscale ap-

proach of Feyel and Chaboche [39] is an example of this variation.

Hybrid hierarchical-concurrent coupling methods As seen above, the hierarchical methods are used

for multiscale problems in which the coupled scales can be separated. The concurrent methods are

used for strongly coupled multiscale problems. However, in some multiscale problems, the involved

scales can be weakly coupled at the beginning of the computation up to a certain response limit, and

subsequently become highly dependent. Therefore, it would be computationally beneficial to combine

the above two coupling approaches to study these problems. A hierarchical approach is used as long

as the requested fine scale information is available. When this information is no longer accessible,

due to strain localization for example, a concurrent approach is invoked. If the fine scale response

is history dependent, it is necessary to reconstruct at least an approximate history. This class of

coupling methods is known in the literature as hybrid hierarchical-concurrent methods or hybrid

hierarchical-semiconcurrent coupling methods (when the involved scales are not intimately coupled in

the concurrent approach). An example of these methods is the adaptive multiscale approach developed

by Akbari et al. [3] to study the quasi-brittle crack propagation in metals. In this approach, the FE2

technique is used in the safe regions of the studied domain. When strain localization appears, a domain

decomposition (concurrent) coupling approach is used to solve the problem exactly at the material

heterogeneities scale.

Compared to the first two coupling approaches, the hybrid hierarchical-concurrent coupling meth-

ods are relatively recent, and are, at present, the subject of several studies [3,79] to alleviates the

difficulties related to the transition from hierarchical to concurrent formulation.

3 Multiscale modeling of complex dynamic problems: concurrent discrete-continuum

coupling methods

Some of the most fascinating dynamic problems in all fields of science involve multiple spatial or tem-

poral scales: processes that occur at a certain scale govern the behavior of the system across several

(usually coarser) scales. Therefore, to simulate accurately such problems with minimum cost, it is of-

ten necessary to have recourse to multiscale modeling. Particularly, the concurrent multiscale coupling

approaches between discrete and continuum methods seem best adapted to study these problems. In-

deed, they offer several potential benefits, compared to other ones. On one hand, these approaches are

of concurrent type. Therefore, as seen in the previous section, they are well adapted to study highly

dependent multiscale phenomena, which are frequently encountered in complex dynamic problems.

On the other hand, both discrete and continuum methods are involved in these approaches, which

allows to exploit their complementary advantages, while avoiding their drawbacks. The small scale

phenomena can easily be treated by application of the discrete method in the associated regions.



Multiscale modeling of complex dynamic problems: An overview and recent developments 23

Furthermore, the use of a continuum method, as a part of the coupling approach, allows to reduce

considerably the computation time, and avoids prohibitively large computations. Consequently, realis-

tic simulations of material science and engineering can be performed. Thanks to their advantages, the

concurrent discrete-continuum coupling approaches have become very fashionable in the past decade.

After recalling the major coupling challenges usually encountered in these approaches, the techniques

most commonly used in them will be listed hereafter. Although this list is not all-inclusive, it gives

a clear vision of the topic. It should be noted that these techniques can also be applied to couple

concurrently discrete methods (discrete-discrete concurrent coupling).

3.1 Coupling challenges

The major difficulty encountered in application of the discrete-continuum coupling approaches in

dynamics is that, when the cutoff frequency of the continuum model is below that of the discrete one,

spurious wave reflections can occur at the interface. This difficulty is almost always the case in this

type of coupling approaches, since there is no benefit in using continuum model with discretization

characteristic length of the same order of magnitude as for the discrete model. To illustrate simply the

problem of spurious wave reflections, the behavior of waves in the discrete and continuum domains

will be explored using simple 1D models. A chain of particles connected with equivalent springs is

used for the discrete model, and its corresponding continuum counterpart is used for the continuum

model (Fig. 10).

Fig. 10: 1D models for investigation of the spurious wave reflections

In the discrete model, the equation of motion of a particle n, in the absence of body forces, can

be derived by application of the fundamental principle of dynamics (FPD):

md̈n = C (dn−1 − dn) + C (dn+1 − dn) = C (dn+1 + dn−1 − 2 dn) (5)

where C is the stiffness of the springs, m and dn are respectively the mass and displacement of the

particle n. Equation (5) can be solved by assuming a wavelike solution which is only defined on the
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particle positions:

dn = Dei (k n r−ω t) (6)

where D is the amplitude of the oscillations, k is the one dimensional wave vector (its amplitude gives

the wavenumber κ = |k| = 2π
λ

), λ is the wave length, r is the interparticle distance (x = n r is the

position of the particle n along the chain) and ω is the angular frequency. Substituting (6) into (5)

leads, after simplification, to:

ω2
D =

4C

m
sin2

(
k r

2

)

(7)

which is known as dispersion relation. It characterizes the dependence of the wave frequency on the

wavenumber κ = |k|. It can be shown from (7) that ωD(k) = ωD(k + 2 j π
r

) for any j ∈ Z. Therefore,

only the case of k ∈ [−π
r
, π
r
] will be considered hereafter. Moreover, for symmetry reason, it is sufficient

to restrict to k = κ > 0.

In the continuum model, the 1D equation of motion, in the absence of body forces, can be written

as:

ρ ü =
∂σ

∂x
(8)

where ρ is the density, σ is the longitudinal Cauchy stress in x direction. Under the assumption of

small deformations, equation (8) can be rewritten as:

ρ ü = E
∂2u

∂x2
(9)

where E is the Young’s modulus. Assuming a harmonic wave propagating along x direction (u =

U ei (k x−ω t)), it is easy to find the continuum dispersion relation:

ω2
C =

E

ρ
k2 (10)

To ensure equivalence between the discrete and continuum models, E and ρ must respectively verify

the following conditions (the cross-sectional area S is assumed to be equal to the unit, for simplicity):

E = C r and ρ =
m

r
(11)

Using these conditions 11, the continuum dispersion relation can be reformulated as follows:

ω2
C =

C r2

m
k2 (12)

Influence of the spatial discretization on the dispersion relation As seen above, different dispersion

relations are obtained for the discrete and continuum models. In this paragraph, the influence of the

spatial discretization of the continuum model on the dispersion relation will be examined. To do this,

the continuum domain is discretized into uniform segments of length h. Using linear interpolation
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functions, the discretized equation of motion of a node n can then be expressed:

ρ h ün =
E

h
(un−1 − un) +

E

h
(un+1 − un) =

E

h
(un+1 + un−1 − 2un) (13)

where un designates the nodal displacement of the node n. By analogy with the discrete model and

using (11), the dispersion relation of the discretized form of the continuum model can be obtained:

ω̃2
C =

4C r2

mh2
sin2

(
k h

2

)

(14)

Using (7) and (14) the cutoff frequencies of the discrete and the discretized continuum models can

be obtained:

f̃c
D =

ω̃max
D

2π
=

1

π

√

C

m
(15)

f̃c
C =

ω̃max
C

2π
=

1

π

√

C

m

r

h
(16)

The cutoff frequency of the discretized continuum model depends on h. In the case of coarse dis-

cretization (h ≫ r), the associated cutoff frequency (f̃c
C) becomes smaller than that of the discrete

one (f̃c
D). As a result, if these models are coupled, the high frequency waves (f > f̃c

C) coming from

the discrete model are not supported by the continuum model, and will be spuriously reflected at the

interface (Fig. 11). This phenomenon has already been addressed using the finite element model with

different element sizes [25].

Fig. 11: Reflection of high frequency waves at the interface between the discrete and continuum models

Taking into account the assumption k = κ > 0, the phase and group velocities in both the discrete

model and discretized continuum model can be obtained form (7) and (14) as:

vphD =
ωD

k
=

2

κ

√

C

m
sin

(κ r

2

)

and vgrD =
∂ωD

∂k
= r

√

C

m
cos

(κ r

2

)

(17)

ṽphC =
ωC

k
=

2

κ

r

h

√

C

m
sin

(
κh

2

)

and ṽgrC =
∂ωC

∂k
= r

√

C

m
cos

(
κh

2

)

(18)

The use of different discretization characteristic lengths in the discrete and continuum models (r and

h) leads to different wave velocities. Moreover, for a fixed κ, the wave velocities in the discretized
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continuum model decreases as h increases. This explains another mechanism of wave reflections, for

which a portion of the main propagating wave is reflected at the interface (not only the high frequency

waves). Figure 12 presents examples of a wave traveling between two models having different wave

propagation velocities, due to different spatial discretization.

(a) Wave traveling from a faster wave velocity model to a slower wave velocity model

(b) Wave traveling from a slower wave velocity model to a faster wave velocity model

Fig. 12: Wave traveling between two models having different wave propagation velocities

Influence of the temporal discretization on the dispersion relation As seen in the previous paragraph,

the use of different discretization characteristic lengths in the discrete and continuum models leads to

different dispersion relations, and then to different phase and group velocities. In this paragraph, the

influence of the temporal discretization on the dispersion relations will be examined. For a given time

step ∆t, the second derivative of a field variable f with respect to time can be approximated as:

f̈ ≈
ft+∆t − 2 ft + ft−∆t

(∆t)2
(19)

Applying (19) on the particles and nodes accelerations (d̈n and ün, respectively) and using the equiv-

alence conditions (11), Equations (5) and (13) can be approximated as:

m

∆t2D
(dp+1

n + dp−1
n − 2 dpn) = C (dpn+1 + dpn−1 − 2 dpn) (20)

m

∆t2C
(up+1

n + up−1
n − 2up

n) = C
r2

h2
(up

n+1 + up
n−1 − 2up

n) (21)

where ∆tD and dpn are respectively the discrete time step and the displacement of a particle n at the

p− th time step, and ∆tC and up
n are respectively the continuum time step and the displacement of

a node n at the p− th time step. By analogy with the derivation of the previous dispersion relations

and using the general form of the harmonic solutions, expressed at the p− th time step on the element
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(particle or node) n as dpn = D ei (k n r−ω p∆tD) and up
n = U ei (k nh−ω p∆tC), the following equations

can be obtained:

sin2

(
ωD ∆tD

2

)

=
C

m
∆t2D sin2

(
k r

2

)

(22)

sin2

(
ω̃C ∆tC

2

)

=
C

m

r2

h2
∆t2C sin2

(
k h

2

)

(23)

Using k = κ > 0 , equations (22) and (23) can be rewritten as:

sin

(
ωD ∆tD

2

)

=

√

C

m
∆tD sin

(κ r

2

)

(24)

sin

(
ω̃C ∆tC

2

)

=

√

C

m

r

h
∆tC sin

(
κh

2

)

(25)

With the help of the first order and the third order Taylor expansions, an approximation of ωD and

ω̃C can be obtained from (24) and (25) as follows:

ωD =

√

C

m
k r

[

1 +
k2 r2

24

(
C

m
∆t2D − 1

)]

(26)

ω̃C =

√

C

m
k r

[

1 +
k2 h2

24

(
C

m

r2

h2
∆t2C − 1

)]

(27)

It can be concluded from these last equations that, for different discretization characteristic lengths

(r and h) and for a given discrete time step ∆tD, it is possible to choose a suitable ∆tC such that the

dispersion relations of both models are equivalent:

∆tC =

√

∆t2D +
m

C

h2 − r2

r2
(28)

Therefore, the inaccurate continuum dispersion relation caused by large discretization characteristic

length h can theoretically be corrected by choosing larger continuum time step ∆tC . However, this

solution is not always applicable in practice. For example in the case of “dynamic explicit” simu-

lations, ∆tC must satisfy the CFL stability criterion (29) to ensure convergence of the numerical

approximation.

∆tC ≤
2π

ω̃max
C

(29)

3.2 Coupling techniques

Several techniques used to bridge discrete and continuum methods in a concurrent manner can be

found in the literature. Some of them are detailed hereafter.
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3.2.1 Edge-to-Edge coupling methods

A common technique for coupling discrete and continuum models is the edge-to-edge approach. This

technique is also widely used in the finite element community for parallel implementation of the FEM

method [119]. As shown in Figure 13, two types of discrete particles are defined in this technique. Aside

from the real ones, virtual particles are defined to model the bond angle-bending for bonds (virtual)

between the discrete model and the continuum model. The virtual particles are connected on one side

to the discrete model by virtual bonds, and on the other side are attached to the continuum model and

move with it. The motion of these particles can be determined by interpolation of the continuum nodes

motion. The most simple variation of this technique is that in which the particles (discrete elements)

and the continuum nodes on the interface are coincident and constrained to move together. This

variation is known in the literature as direct coupling approach. In the general case, the coincidence

of particles and nodes on the interface is not necessary. In this case, additional handling is required to

ensure correct communication between the coupled models. This last point will be discussed in more

detail below.

A domain ΩG is considered with boundary ∂Ω = ∂Ωu∪∂Ωt (∂Ωu∩∂Ωt = φ), such that essential

(displacement) and natural (traction) boundary conditions are respectively prescribed on ∂Ωu and

∂Ωt. This domain is divided into two adjacent subdomains ΩC and ΩD , which are respectively mod-

eled using the continuum approach and the discrete approach (Fig. 13). An isotropic linear elastic

behavior and small deformations are assumed for simplicity. In the present development, an energetic

(Hamiltonian) approach will be used to derive the governing equations of the coupling system.

ug
tg

Fig. 13: Edge-to-edge coupling

The total energy in the discrete subdomain ΩD , assumed to be isolated from the continuum

subdomain at this stage, is known as the Hamiltonian and is given by:

HD = Ekinetic
D + Eint

D − W ext
D

=

nD∑

i=1

1

2mi

(

p
i
D

)2
−

nD∑

i=1

f
int
i di + Evirtual

D −

nD∑

i=1

f
ext
i di

(30)

where Ekinetic
D is the kinetic energy, Eint

D is the internal energy, W ext
D is the external work, nD is

the total number of particles, mi and pi
D = mi ḋi are the mass and momentum of the particle i, di
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and ḋi are respectively the displacement and velocity of the particle i, f int
i is the total internal force

exerted on the particle i by its neighbors, fext
i is the total external force acting on the particle i,

and Evirtual
D is the bending potential of the virtual bonds. In some atomistic methods, Evirtual

D is

simply a function of the bond angle change between the virtual bonds and their adjacent ones (Fig.

14). It should be noted that the stretching energy of the virtual bonds is automatically included in

the continuum internal energy, since the virtual particles move with the continuum material. At this

stage, fext
i does not include the coupling force which will be introduced later.

Fig. 14: Example of bending potential computation

Under the assumption of small deformations, the total energy in the continuum subdomain, sup-

posed to be isolated at this stage, can be written:

HC = Ekinetic
C + Eint

C − W ext
C

=

ˆ

ΩC

1

2
ρ u̇2 dΩ + 1

2

ˆ

ΩC

σ : ε dΩ −
´

ΩC

ρ bu dΩ −
´

∂Ωt

C

tg u dΓ
(31)

where ρ is the density and u̇ is the velocity field, σ and ε are respectively the Cauchy stress tensor

and the strain tensor, b is the body force per unit mass, tg is the prescribed traction vector on ∂Ωt
C .

In the above development, the discrete and continuum energies are derived without taking into

account the coupling conditions. In the following, it will be shown how these models are coupled.

Generally, the compatibility at the interface between the coupled models can be enforced using either

velocity constraints or displacement constraints. However, in the case of highly dynamic problems,

where dynamic effects become significant, it would be preferable to use velocity constraints to ensure

a correct estimate of the kinetic energy at the interface. For the sake of consistency with the energetic

(Hamiltonian) approach followed here to develop the edge-to-edge coupling method, displacement

constraints will be used in the rest of this derivation. These constraints can be applied in different

ways, as shown in (32) and (33).

gweak
i = ‖u(xi)− di‖

2 = 0, i ∈ [1, nDI ] (32)

gstrong
i = u(xi)− di = 0, i ∈ [1, nDI ] (33)

u is the continuum displacement field, di is the displacement of a particle i located on the interface

at xi coordinates, and nDI is the number of particles on the interface. In (32), a single constraint



30 Mohamed Jebahi et al.

is applied per particle belonging to the interface. This results in a system of equations with reduced

number of degrees of freedom. However, using this equation, displacement compatibility is only sat-

isfied approximately, which can lead to unacceptable large errors. In contrast, three constraints (one

for each component) per particle are applied in (33), which allows the coupled models to better com-

municate. Although it can lead to large system of equations, (33) is generally recommended and is

retained here to enforce compatibility between the discrete and continuum approaches. In practice,

these constraints can be introduced in the global system by using rigid models, such as the Lagrangian

multipliers model (LM), elastic models such as the penalty model (PM), or a combination of these

models such as the Augmented Lagrange Multipliers model (ALM). In the rest of this derivation, the

ALM is used, because it is more general and includes the two other models. The associated coupling

energy, in a continuous form, is given by:

HALM
I =

ˆ

ΓI

λ (u− d) dΓ +
p

2

ˆ

ΓI

(u− d)2 dΓ (34)

where ΓI is the interface between the two models, λ is the Lagrange multipliers field which can be

regarded as a generalized coupling force field and p is the penalty parameter. Since the displacements

di in the discrete subdomain ΩD are only defined at the particle positions, to evaluate HALM
D (34), a

continuous field d must be inferred, at least on the interface, from the particle displacements di. This

can be achieved using a kind of interpolation:

d(xi) =

nDI∑

j=1

φj
D(xi)dj (35)

where φj
D is the interpolation function associated to the particle j. Taking into account (34), the total

energy of the coupling system can be obtained:

HALM
G = HD +HC +HALM

I (36)

In (36), the Hamiltonian is given in a continuous form. To develop the corresponding discrete form

H̃ALM
G , the continuum displacement and the Lagrange multipliers fields (u and λ, respectively) can

be approximated, using for example a finite element method in the corresponding domains, as follows:

ũ(x) =

nC∑

i=1

φi
C(x)ui (37)

λ̃(x) =

nI∑

i=1

φi
I(x)λi (38)

where φi
C and φi

I are the shape functions constructed respectively on Ω̃C and Γ̃I (the discretized

forms of respectively ΩC and ΓI), nC and nI are respectively the total number of continuum nodes

and the total number of Lagrange multipliers nodes. In the general case, the Lagrange multipliers
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nodes do not necessary coincide with the discrete particles or the continuum nodes at the interface.

Substituting (37) and (38) into (36) and using (35) on ΓI , the discrete Hamiltonian H̃ALM
G can be

obtained, and then the discretized Hamiltonian equations of the coupling system can be derived:

ṗ
i
D = −

∂H̃ALM
G

∂di
, and ḋi =

∂H̃ALM
G

∂ṗi
D

for i ∈ [1, nD] (39)

ṗ
i
C = −

∂H̃ALM
G

∂ui
and u̇i =

∂H̃ALM
G

∂ṗi
C

for i ∈ [1, nC ] (40)

gi =
∂H̃ALM

G

∂λi
= 0 for i ∈ [1, nI ] (41)

Replacing ḋi and u̇i with their expressions in respectively ṗi
D and ṗi

C , the global system of equations

can be expressed, in matrix form, as:

md̈ = f int + fext + fλ (42)

Mü = F
int + F

ext − F
λ (43)

CIu− cI d = 0 (44)

where m is the diagonal mass matrix of the particles, f int, fext and fλ are the vectors of respectively

the internal forces, the external forces and the coupling forces in the discrete model, M is the lumped

mass matrix of the nodes, F int, F ext and F λ are the vectors of respectively the internal forces, the

external forces and the coupling forces in the continuum model, CI and cI are the continuum and

discrete coupling matrices.

The matrix systems (42), (43) and (44) are in the form of time-dependent ordinary differential

equations (ODEs). These equations can be solved numerically using a time integration scheme. Many

types of time integration schemes can be found in the literature. They can be classified into three

headings: explicit, implicit and semi-implicit (or also semi-explicit). The explicit schemes calculate the

state of a system at the current time step from its state at the previous time step. The implicit schemes

use both the previous and current states to find the solution at the current time step. The semi-implicit

schemes combine some features of the explicit and implicit schemes to find the solution. In dynamic

studies, the explicit schemes are generally more recommended to capture the fine scale effects and

ensure a proper momentum transfer. Many explicit schemes can be found in the literature, such as

the Runge-Kutta, position and velocity Verlet schemes. A comparison between these schemes can be

found in reference [91]. According to this reference, the velocity Verlet scheme provides good results.

Moreover, it is easier to implement. Therefore, this scheme is a good candidate to solve the above

matrix systems. This scheme gives an O
(
∆t3

)
approximation for both velocities and displacements.

Thus, the choice of a displacement coupling (control of displacements at the interface) does not

affect the coupling approach accuracy compared with a velocity coupling (control of velocities at the

interface).
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The edge-to-edge coupling methods are rather dedicated for quasi-static problems or problems with

relatively low dynamic effects. Otherwise, fine discretization of the continuum subdomain, at the same

level as the discrete subdomain, is required to deal with the spurious wave reflections at the interface.

Moreover, in most cases, this (use of fine continuum discretization) is not sufficient to overcome the

reflections problem. Mostly, the particles belonging to the interface must be coupled with dampers,

which are generally difficult to adjust. These difficulties make the edge-to-edge coupling approaches

useless for dynamic studies, since the reduction in the computation effort from a fully discrete approach

is not significant.

3.2.2 Bridging domain coupling methods

In the following, the bridging (overlapping) domain (BD) technique for coupling continuum models

with discrete models is described. Contrary to the edge-to-edge coupling technique, in the present

one, a bridging (overlapping) domain is considered between the coupled models. It should be noted

that this technique is quite similar to the Arlequin approach developed by Ben Dhia et al. [15,17,18].

They are based on practically the same mechanical ingredients which are:

– Decomposition of the global domain ΩG into two subdomains ΩD and ΩC , modeled respectively

by the discrete model and the continuum model, with a bridging region ΩB .

– Weak coupling (based on the weak formulation): this second point states that, to couple the

superposed models, the discrepancy between the mechanical states, e.g. displacement, deformation,

strain, etc, must be controlled using some kinds of fictive forces. However, to allow each model to

express its own wealth, the discrepancy should preferably be controlled in a weak manner using

averaging operators. This point consists of:

– Definition of a gluing zone ΩGL (ΩGL ⊆ ΩB), in which the coupling control will be performed.

In the general case, this zone can be different from the bridging region (ΩGL ( ΩB). In the

present development, ΩGL is chosen the same that ΩB . Hereafter, the term “bridging zone”

will be used to designate both the bridging zone and the gluing zone.

– Definition of a mediator space M which can be defined as a space of the field variables,

restricted to ΩB , that must be controlled in the bridging region. To ensure a correct dialogue

between the coupled models, the control quantities must be carefully chosen. Generally, either

the displacements or velocities are controlled in ΩB .

– Definition of a projection operator Π, which will be used to project the discrete and continuum

field variables to be controlled, onto the mediator space M.

– Definition of a junction model, which will be used to ensure the compatibility of the controlled

field variables in the bridging region. Besides the Lagrange, penalty and Augmented Lagrange

Multipliers Methods, which are introduced earlier, another junction model has been proposed

in the literature [10,17,15,18,16]:

< λ, fC − fD >=

ˆ

ΩB

η1 λ · (ΠfC −ΠfD) + η2 l
2
ε(λ) : ε(ΠfC −ΠfD) dΩ (45)
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where (ΠfC −ΠfD) is the difference between the projected continuum and discrete control

quantities on the mediator space M, λ is the Lagrange multiplier field and l is a parameter

which is named “junction parameter” in this paper. This parameter which has the dimension

of a length is added to ensure the homogeneity of the integral terms in (45). η1 and η2 are

non-negative weight parameters. These parameters can be chosen so as to scale the two integral

terms in (45). (η1, η2) = (1, 0) refers to L2(ΩB) inner (scalar) product which is the same that

the Lagrange multiplier model, (η1, η2) = (1, 1) refers to H1(ΩB) inner (scalar) product and

(η1, η2) = (0, 1) refers to H1(ΩB) semi-inner product.

– Partition of energy between the discrete and continuum models in the bridging zone. The two

models coexist in ΩB . Therefore, the discrete and continuum energies in this region must be

weighted using a kind of unity partition functions (to avoid counting twice the associated energy).

Different weight functions can be used for the kinetic energy, the internal energy and the external

work in ΩB . These functions must verify

fC : ΩG 7→ [0, 1]

x 7→







1 in ΩC\ΩB

[0, 1] in ΩB

0 in ΩD\ΩB

(46)

in the continuum subdomain, and fD = f̄C = 1−fC in the discrete subdomain. Figure 15 presents

examples of weight functions.

Fig. 15: Examples of weight functions

These different ingredients will be detailed hereafter. As for the edge-to-edge technique, a domain ΩG

is considered with boundary ∂Ω = ∂Ωu ∪ ∂Ωt (∂Ωu ∩ ∂Ωt = φ), such that essential (displacement)

and natural (traction) boundary conditions are respectively prescribed on ∂Ωu and ∂Ωt. This domain

is divided into two subdomains ΩD, treated by the discrete model, and ΩC , treated by the continuum

model, with a bridging region ΩB (Fig. 16). An isotropic linear elastic behavior and small deformations

are assumed for simplicity.

To weight the energies in the continuum subdomain, three weight functions are assumed in this

development: α for the internal energy, β for the kinetic energy and γ for the external work. In a

complementary manner, the energies in the discrete subdomain are weighted using ᾱ, β̄ and γ̄, for

respectively the internal energy, the kinetic energy and the external work. Using these functions, the
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Fig. 16: Bridging domain coupling

weighted discrete and continuum Hamiltonians can respectively be written:

Hw
D = Ekinetic, w

D + Eint, w
D − W ext,w

D

=

nD∑

i=1

1

2mi
β̄i

(

p
i
D

)2
−

nD∑

i=1

ᾱi f
int
i di −

nD∑

i=1

γ̄i f
ext
i di

(47)

Hw
C = Ekinetic,w

C + Eint, w
C − W ext,w

C

=

ˆ

ΩC

1

2
β ρ u̇2 dΩ + 1

2

ˆ

ΩC

ασ : ε dΩ −
´

ΩC

γ ρ bu dΩ −
´

∂Ωt

C

γ tg u dΓ
(48)

To enforce compatibility between the coupled models in the bridging zone ΩB , the H1(ΩB) junction

model ((45), with (η1, η2) = (1, 1)) is used. The associated coupling energy can be written:

HH1
B =

ˆ

ΩB

λ · (Πu−Πd) + l2ε(λ) : ε(Πu−Πd) dΩ (49)

As explained above, to evaluate HH1
B , a continuous displacement field d must be approximated from

the particle displacements di in the bridging zone, using a kind of interpolation (35). The global

Hamiltonian of the coupling system can be obtained by summing (47), (48) and (49):

HH1
G = Hw

D +Hw
C +HH1

B (50)

To obtain the corresponding discrete form H̃H1
G , the continuum displacement field u and the Lagrange

multipliers field λ are approximated as given by (37) and (38). Using H̃H1
G , the global system of

equations can be derived:

mβ d̈ = f int
α + fext

γ + fλ (51)

Mβ ü = F
int
α + F

ext
γ − F

λ (52)

CB u− cB d = 0 (53)

where mβ is the weighted diagonal mass matrix of the particles, f int
α , fext

γ and fλ are respectively

the weighted vector of internal forces, the weighted vector of external forces and the vector of coupling

forces in the discrete model, Mβ is the weighted continuum lumped mass matrix, F int
α , F ext

γ and F λ
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are respectively the weighted vector of internal forces, the weighted vector of the external forces and

the vector of coupling forces in the continuum model. CB and cB are the continuum and discrete

coupling matrices. For Mβ and mβ to be invertible, the weight functions β and β̄ must be strictly

positive in ΩB and at the border ∂ΩB . Therefore, a small ε must be used instead of zero at the nodes

assigned to ∂ΩB. The definition of the weight function β is slightly amended from (46) as:

β : ΩG → [0, 1]

x →







1 in ΩC\ΩB

[ε, 1− ε] in ΩC|ΩB

0 in ΩD\ΩB

(54)

The global system of equations consisting of (51), (52) and (53) can finally be solved using a temporal

integration scheme.

In the bridging domain (BD) coupling methods, the fine scale solution (of the discrete model) is

continuously projected onto the coarse scale solution (of the continuum model) in the bridging zone.

This can cancel the high frequency waves (HFWs), and then avoids spurious wave reflections at the

discrete/continuum interface, without any additional filtering or damping [18,57]. However, this is

conditional upon choosing correctly the coupling parameters, which is not a straightforward issue

due to the large number of these parameters. Several studies aiming to alleviate this issue can be

found in the literature. These studies have been extended in a previous paper [57] to dynamics using

generalized 3D models, in which no coincidence conditions are imposed between the continuum nodes,

the Lagrange multipliers nodes and the particles in the bridging zone. This last study [57] will be

resumed and extended in section 4 to better investigate the effects of the main coupling parameters

and to give recommendations and trends simplifying their setting in practice. Another interesting

aspect of the BD coupling methods is that they can also be applied to obtain solution for nonlinear

problems, in which devising an energy functional for the entire system is not possible, e.g. as in the

presence of irreversible processes. In this context, Jacob et al. [40] formulated an atomistic-continuum

coupling method based on a blend of the continuum stress and the atomistic force.

3.2.3 Bridging scale coupling methods

The bridging scale coupling method was recently proposed by Wagner and Liu [110] to concurrently

couple Molecular Dynamics (MD) and Finite Element Method (FEM). The fundamentals of this

approach are briefly reviewed in this subsection, the reader can refer to [84,85,110] for more detail.

Two subdomains ΩD and ΩC , respectively modeled by discrete and continuum models, are considered.

To better understand the concepts of the bridging scale approach, these subdomains are first assumed

to be completely superimposed in the global domain ΩG.
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The key idea of such an approach is to decompose the total displacement field u at the particle

positions into coarse and fine scales:

uTot(xi) = ū(xi) + u
′(xi) (55)

where xi represents the position of a particle i, ū and u′ are respectively the coarse scale and fine

scale displacements (Fig. 17).

u u u `Tot

Fig. 17: Scale decomposition of total displacement at the particle positions

After discretization of the continuum subdomain ΩC , the coarse scale displacement at the particle

positions xj is evaluated form the continuum nodal displacements as:

ū(xj) =

nC∑

i=1

φi
C(xj)ui (56)

where ui and φi
C are the continuum nodal displacement and the shape function associated to the

node i, respectively. For the sake of clarity, it is convenient to employ a matrix representation for

subsequent developments. In matrix form, (56) can be rewritten as:

ū = N u (57)

where ū = {ū(x1) ū(x2) ... ū(xnD
)}t is the vector of coarse displacements of the particles, nD is the

total number of particles, u = {u1 u2 ... unC
} t is the vector of continuum nodal displacements, nC

is the total number of nodes and N is the interpolation matrix.

The fine scale displacement is defined as the part of the total displacement that cannot be rep-

resented by the coarse scale. This quantity is computed from the vector d of particle displacements,

which include the coarse scale parts, by subtracting (from d) the projection of the discrete solution

onto the continuum solution.
u′ = d− P d

= Qd
(58)

where P is the projection matrix and Q = I−P is the complementary projector [110]. The term P d,

which is called “bridging scale”, is the part of the particle displacement that must be subtracted from

the total displacement to completely separate the scales (i.e. the coarse and fine scales are orthogonal

or linearly independent of each other). The total displacement u can finally be written as the sum of
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the coarse and fine scales as:

uTot = N u+Qd (59)

To derive the coupled discrete and continuum equations, it is most convenient to adopt the Lagrangian

approach, in which the multiscale Lagrangian is defined by:

L(uTot, u̇Tot) = Ekinetic(u̇Tot) − Eint(uTot) + W ext(uTot)

= 1
2 u̇

t M u̇+ 1
2 ḋ

t
mf ḋ − Eint (N u+Qd) +

(
fext

)t
(N u+Qd)

(60)

where M and mf are respectively the coarse scale and fine scale diagonal mass matrices (defined in

terms of the diagonal mass matrix of the particles m as: M = N t mN and mf = Qt mQ = Qt m =

mQ), and fext is the vector of external forces acting on the particles. An important feature of the

Lagrangian (60) is the absence of quadratic terms in the kinetic energy, which are canceled due to the

presence of the “bridging scale”. The coupled multi-scale equations of motion can obtained from L as

follows:
d

dt

(
∂L

∂u̇

)

−
∂L

∂u
= 0 and

d

dt

(
∂L

∂ḋ

)

−
∂L

∂d
= 0 (61)

Using (60), these equations can be rewritten after simplification as:

md̈ = f
int + f

ext (62)

Mü = N
t
(

f
int + f

ext
)

(63)

The first (fine scale) equation is the equation of motion in the discrete model, m is the diagonal mass

matrix of the particles. The second (coarse scale) equation is simply the equation of motion in the

continuum model, while noting that the mass matrix M is consistent. The coupling between these

equations is through the vector of the continuum internal forces F int = N t f int which is a function

of the vector of the discrete internal forces (f int).

In the above development, ΩD and ΩC are assumed to be completely superimposed. Therefore,

the continuum equation of motion (63) is only an approximation of the first one (62) and then is

redundant. The total displacement and discrete displacements (uTot and d, respectively) satisfy the

same equation of motion (62) and have the same initial conditions. Therefore, these quantities are

identical for all time, and consequently, the continuum displacement u can be determined by (59),

which imply: N u = P d.

Assuming that the fine scale analysis is only required in a small region ΩB , the particles outside

this zone will now be removed. In other words, the unnecessary fine scale degrees of freedom will be

eliminated. By doing so, the discrete model is reduced to ΩB , where the two models coexist, and

the remaining estate is only modeled by the continuum model (Fig. 18). The process of eliminating

the unnecessary degrees of freedom results in a modified equation of motion in the discrete model,

including an external force, called impedance force. This force is a function of a damping matrix or

equivalently its time derivative, known as the time history kernel [2,110]. The damping kernel was
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first derived analytically by Adelman and Doll [2] for a harmonic 1D lattice. However, their analytical

approach is very costly and is intractable above one dimension [85]. To overcome this limitation, other

works [24,37] have proposed numerical approaches to evaluate this quantity, whose the effect is to

dissipate the high frequency waves and to avoid wave reflections at the interface between the discrete

and continuum models.

Fig. 18: Removal of unnecessary degrees of freedom in bridging scale modeling

In recent years, the bridging scales methods have received much research interest and several

improvements, concerning the damping kernel and the projection mechanism, have been proposed.

In the first implementation of Wagner and Liu [110], the projection of the fine scale solution onto

the coarse scale one is apparently only performed at the interface using the approach of Adelman

and Doll [2] (without any Lagrange multipliers). This approach has been improved by computing the

interface nodes using Green’s functions for lattices [84,85]. More recently, other enhancements have

been proposed to join the coarse and fine scales in a bridging domain, using the perfectly matched

layer (PML) technique [62,106]. As shown in reference [114], the performance of the bridging scale

(BS) methods based on PML is comparable to that of bridging domain (BD) methods. However, the

BD methods would be less costly, since they allow to avoid spurious wave reflections by only a correct

setting of their parameters (no additional treatments are required).

3.2.4 Other coupling techniques

Quasicontinuum method The quasicontinuum (QC) method was originally developed in the context

of lattice statics at zero temperature (Molecular Mechanics) using empirical interatomic potentials

[102,103]. Later on, it was extended to dynamic problems using the coarse grained energy and the

Hamilton’s principle [63,90,95]. The chief objective of the theory is to systematically coarsen a par-

ticle (atomistic) description by introducing kinematic constraints. These constraints are selected and

designed so that the fully atomistic model is preserved in the regions of fine scale effects and large
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numbers of particles (atoms) are collectively treated in the coarse scale regions. The fully discrete

model is then represented by a set of representative particles (mainly located in the fine scale region),

where the equation of motion has to be solved. The displacement of the non-representative parti-

cles are determined by kinematic constraints based on finite element meshing, whose the nodes are

coincident with the representative particles (Fig. 19).

(a) Selection of representative particles (b) Meshing for application of kine-
matic constraints

Fig. 19: Quasicontinuum model

Although the imposed kinematic constraints significantly reduce the number of degrees of freedom

(particles), the computational complexity of evaluating the generalized forces corresponding to the

coarse-grained degrees of freedom (representative particles) still scales with the total number of par-

ticles in the system making computation on large systems intractable. Various approximations have

been suggested to further reduce the complexity of forces computation [53,63,83,90,95]. These include

the mixed discrete (atomistic) and continuum formulations, or introduction of cluster summation rules

on lattice sums. However, these approximations induce spurious forces, which can affect the solution

accuracy. As shown in the literature [63], the effects of theses forces are more significant in the case of

dynamic studies. These effects may even be more severe than the spurious reflections at the interface.

Many strategies have been suggested to correct the errors incurred in these approximations [96,111],

but they introduce undesirable seams in the process. Further, recent numerical analysis suggests that

the approximations introduced may not be consistent and stable, and can result in uncontrolled errors

for rapid coarse-graining [33,34]. More recently, other works have proposed seamless quasicontinuum

formulations. However, they generally suffer from a lack of systematic convergence [53].

ONIOM method The ONIOM (our own N-layered integrated molecular orbital+molecular mechanics)

approach was first developed by Svensson et al. [100] to couple quantum mechanical methods and

atomistic methods. Using this approach, the fine scale model is superimposed on the coarse scale

model in the regions where high accuracy is required. Communication of the coupled models is ensured

by another model (fictitious) added to cancel the coarse scale energy in the overlapping region. The

ONIOM approach can also be used to couple discrete and continuum methods. Figure 20 gives a 1D
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illustration for a discrete-continuum coupling based on this approach. As can be seen, three models

are involved in the zone of fine scale effects ΩB : the discrete model (DM), the continuum model (CM)

and a fictitious model (DC) that is used to counteract the continuum energy. In ΩB , both the CM

and DC models are fictitious and are only retained to simplify the coupling. The total internal energy

as treated by ONIOM is given by:

Eint = Eint
D + Eint

C − Eint
DC (64)

Fig. 20: ONIOM approach for coupling of discrete and continuum models

The discrete and continuum models are linked at the interface through dangling bonds (Fig. 20),

which are connected on one side to ordinary particles at the boundary of the discrete model, and

on the other side to fictitious link particles attached to the continuum model. These bonds represent

a major source of error in the ONIOM methods, since their behavior can be polluted by incorrect

placement of the link particles. This problem would even be more pronounced in the case of dynamic

studies.

Coupling of discrete and continuum meshless methods In this paragraph, techniques used to couple

discrete and continuum meshless methods are briefly reviewed, the reader is referred to [68] for more

detail. These techniques were first developed to couple Smoothed Particle Hydrodynamics (SPH)

and Molecular Dynamics (MD). As seen in section 2, in meshless methods, the studied domain is

represented by a set of scattered particles (continuum particles) or nodes without any connectivity

between them. Each continuum particle has its corresponding smoothing length R, representing the

influence domain, and length scale h, characterizing locally the domain discretization. The idea is

that the continuum particles close to the interface (transitional particles) interact on one side with

their neighboring continuum and discrete particles (belonging the their influence domains), and act

on the other side as virtual discrete particles which interact with the neighboring ordinary and virtual

discrete particles (Fig. 21). To avoid interface problems, the length scale of the transitional particles

must be graded down to the order of the discretization characteristic length of the discrete model.
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The communication between the coupled models can further be enhanced by using large transitional

zone, in which the particles act both as continuum and discrete particles (Fig. 21).

(a) Coupling with reduced transitional
zone

(b) Coupling with extended transi-
tional zone

Fig. 21: Techniques for coupling discrete and continuum meshless methods

4 More light on the setting of the bridging domain coupling parameters

As seen in section 3, the bridging domain (BD) coupling methods are well adapted to study dynamic

problems. However, the effectiveness of these approaches remains the hostage of a correct setting of

their coupling parameters. Several works studying these parameters can be found in the literature. Ben

Dhia and Rateau [15,17,18] were the first to study mathematically these ingredients for continuum-

continuum coupling. Their study is still conceptually valid for continuum-discrete coupling. The main

results concerning the well-posedness of the coupling problem are recalled hereafter. The weight func-

tion α, applied to weight the internal energy, must be strictly positive in the bridging zone. Without

this condition the coercivity of the internal energy cannot be verified. Another significant result con-

cerning the junction models is that for the discretized problem, contrary to the H1 coupling ((45),

with (η1, η2) = (1, 1)) which yields a well-posed problem, the L2 coupling (l = 0) can lead to an

ill-conditioned system of equations, especially in the case of highly refined discretization. In the same

context, Bauman et al. [10] have studied another coupling model, H1 semi-norm (associated to the

semi-inner product given by (45), with (η1, η2) = (0, 1)). This model leads to a well-posed problem,

but it does not constrain enough the continuum and discrete displacements in the bridging zone.

Other works [10,45,46] have studied numerically these parameters using 1D static models. Guidault

et al. [45,46] have noted that, for the L2 coupling, the weight function α must be continuous at the

boundary of the bridging (gluing) zone ∂ΩB . Indeed, the use of a discontinuous weight function can

cause undesirable free conditions at ∂ΩB . Concerning the choice of the mediator space, Ben Dhia et

al. [16,17] mentioned that in the case of continuous domains, it is convenient to choose M = H1(ΩB);

however, it is very difficult to choose the finite approximation space M̃. To address this difficulty,

several works [10,45,46] proposed static numerical studies of M̃, using 1D models. The different con-

figurations that were studied are similar to those presented in Figures 22a, 22b and 22c. The static
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studies of Guidault et al. [45] show that: (i) in the case of a fine mediator space M̃ (Fig. 22c), the

response of the structure does not depend on the weight functions and a locking phenomenon takes

place, i.e. the fine solution exactly conforms to the coarse solution in the bridging zone; (ii) in the case

of a coarse mediator space M̃ (Fig. 22b), the weight functions have an influence on the solutions such

that the larger the weight function on the fine scale model, the smaller the maximum solution jump

between the two models becomes. These works have been recently extended to 3D dynamic studies

[57].

In the following, it is proposed to corroborate these dynamics studies to better investigate the

influence of the main coupling parameters and to give a methodology simplifying their setting in

practice. It will be demonstrated that some of the results proven in statics using 1D models are not

valid in 3D dynamic simulations. To do this, the BD coupling method recently developed between the

Discrete Element Method (DEM) and the Constrained Natural Element Method (CNEM) is used.

The derivation of this approach is briefly recalled hereafter, the reader is referred to [57] for more

detail.

4.1 Concurrent DEM-CNEM coupling method

The coupling ingredients used in this approach are as follows. Velocity constraints are applied in

the bridging zone to enforce the DEM-CNEM compatibility. These constraints are introduced in the

coupling system using the H1(ΩB) inner product ((45), with (η1, η2) = (1, 1)). The same weight

function is used to weight the different energies (α = β = γ). Contrary to what is presented in

subsection 3.2, where only particle displacements are considered in the discrete model, the present

development is performed using another variation of discrete methods, where both displacement and

rotation of particles are considered [6]. The variational approach of virtual power is used to derive the

coupling equations. This approach explicitly introduces velocities in the coupling formulation, which

makes easier the application of the velocity constraints.

In an isolated system of the discrete subdomain, the governing equations can be written:

for i = 1..nD and t ∈ [0, tend], find
(

di, θi, f
int
i , cint

i

)

∈ R
3 × R

3 × R
3 × R

3 such that, given the

initial conditions: {

fext
i + f int

i = mid̈i

cexti + cint
i = Iiθ̈i

(65)

where di, θi, mi and Ii represent respectively the displacement, rotation, mass and mass moment

of inertia of the particle i. f int
i and cint

i are respectively the internal force and torque applied on

the particle i. fext
i and cexti are respectively the external force and torque applied on the particle i.

Applying the principle of the virtual power in ΩD, (65) can be reformulated as follows:

find (d, θ, f , c) ∈ Dad ×Oad ×Fad × Cad such that ∀
(

δḋ, δθ̇
)

∈ Ḋad,0 × Ȯad,0:

nD∑

i=1

fext
i δḋi +

nD∑

i=1

f int
i δḋi +

nD∑

i=1

cexti δθ̇i +

nD∑

i=1

cint
i δθ̇i =

nD∑

i=1

mid̈i δḋi +

nD∑

i=1

Ii θ̈i δθ̇i (66)
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The admissible spaces are defined as:

– Dad = {d = di(t), i = [1..nD] ∀ t ∈ [0, tend]}

– Oad = {θ = θi(t), i = [1..nD] ∀ t ∈ [0, tend]}

– Fad =
{
f = f int

i (t), i = [1..nD] ∀ t ∈ [0, tend]
}

– Cad =
{
c = cint

i (t), i = [1..nD] ∀ t ∈ [0, tend]
}

– Ḋad,0 =
{

ḋ = ḋi(t), i = [1..nD] ; ḋ = 0 on ∂Ωu
D; ∀ t ∈ [0, tend]

}

– Ȯad,0 =
{

θ̇ = θ̇i(t), i = [1..nD] ; θ̇ = 0 on ∂Ωu
D; ∀ t ∈ [0, tend]

}

Under the assumption of isotropic linear elastic behavior and small deformations, the governing equa-

tions in the continuum subdomain ΩC , which is assumed to be isolated at this stage, can be written

as:

∀x ∈ ΩC(t) and t ∈ [0, tend], find (u,σ) ∈
[
H1 (ΩC)

]3
×

[
L2 (ΩC)

]6
such that, given the initial

conditions: 





div(σ) + ρb = ρü in ΩC

σ = A : ε(u)

ε(u) = 1
2 (∇u+∇tu)

u = ug on ∂Ωu
C

σ.n = tg on ∂Ωt
C

(67)

where ρ is the density, u is the continuum displacement field, σ is the Cauchy stress tensor, ε is the

stain tensor, A is the stiffness tensor, b is the body force per unit mass, ug and tg are respectively the

given (prescribed) displacement and traction on ∂Ωu
C and ∂Ωt

C , and n is the outward-pointing unit

normal vector. Using the principle of the virtual power, the continuum weak formulation associated

with (67) can be derived:

find u ∈ Uad such that ∀ δu̇ ∈ U̇ad,0, given the initial conditions:

ˆ

∂Ωt

C

δu̇ · tg dΓ −

ˆ

ΩC

ε(δu̇) : A : ε(u) dΩ +

ˆ

ΩC

ρ δu̇ · b dΩ =

ˆ

ΩC

ρ δu̇ · ü dΩ (68)

where δu̇ represent the test functions. The admissible solution spaces, Uad and U̇ad,0, are defined as

follows:

– Uad =
{
u = u(x, t) ∈ [H1(ΩC)]

3;u = ug on ∂Ωu
C ; ∀ t ∈ [0, tend]

}

– U̇ad,0 =
{
u̇ = u̇(x, t) ∈ [H1(ΩC)]3; u̇ = 0 on ∂Ωu

C ; ∀ t ∈ [0, tend]
}

Based on the previous weak formulations of the isolated discrete and continuum subdomains ((66) and

(68)), the coupling conditions can be introduced to obtain the global weak formulation of the whole

problem. By weighting (66) and (68) and using the H1(ΩB) junction model, the global weighted weak

formulation can be derived:
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find (u,d, θ,λ) ∈ Uad ×Dad ×Oad ×M such that ∀ (δu̇, δḋ, δθ̇, δλ) ∈ U̇ad,0 × Ḋad,0 × Ȯad,0 ×M,
given the initial conditions:

ˆ

ΩC

αρ δu̇ · ü dΩ +

ˆ

ΩC

α ε(δu̇) : A : ε(u) dΩ −

ˆ

∂Ωt

C

α δu̇ · tg dΓ −

ˆ

ΩC

αρ δu̇ · b dΩ

+

nD∑

i=1

ᾱi mi d̈i δḋi +

nD∑

i=1

ᾱi Ii θ̈i δθ̇i −

nD∑

i=1

(ᾱi f
ext
i + ᾱi f

int
i ) · δḋi

−

nD∑

i=1

(ᾱi c
ext
i + ᾱi c

int
i ) δθ̇i + δ

ˆ

ΩB

λ · (Πu̇−Πḋ) + l2ε(λ) : ε(Πu̇ −Πḋ) dΩ = 0

(69)

To obtain the corresponding discrete equations, the admissible spaces Uad and M as well as

their dual geometric spaces must be discretized. In this development, the dual geometric space of

M (mediator space) is taken independent from ΩD|ΩB
and ΩC|ΩB

. Therefore, a third subdomain

specific to the bridging region is introduced which will be designated hereafter by ΩB (bridging

subdomain). Consequently, the discretization of this subdomain can be made independently of the

continuum and discrete subdomains. This makes easier the application of the coupling method for

complex problems. Moreover, as will be seen in subsection 4.2, this provides more flexibility to the

choice of the discretization characteristic lengths in the continuum and discrete subdomains. The

different discretized subdomains of ΩD, ΩC and ΩB are denoted by Ω̃D, Ω̃C and Ω̃B , respectively.

Since ΩD is naturally discretized, Ω̃D is the same that ΩD (Ω̃D = ΩD). According to the configuration

of the discretized subdomains in the bridging zone, four cases can be distinguished (Fig. 22). The first

three configurations (Figs. 22a, 22b and 22c) present some regularity in the bridging zone and are

widely studied in the literature. The present work considers the fourth configuration which is the

most general and includes the first three configurations: no coincidence conditions are imposed in

the bridging region. In fact, using this configuration, it is very difficult to prove mathematically the

existence and uniqueness of the solutions. The well-posedness of the global problem has been analyzed

numerically in a previous paper [57] and will be resumed in subsection 4.2.

After discretization of the different geometries, the discretized form of the associated (dual) ad-

missible spaces Dad, Uad and M can be derived. Their discretized forms are denoted by D̃ad, Ũad and

M̃, respectively. Using the CNEM interpolation on the different discretized admissible spaces, D̃ad,

Ũad and M̃, the displacement fields d and u and the Lagrange multipliers λ can be approximated as:

d̃(x) =

nD∑

i=1

φi
D(x)di (70)

ũ(x) =

nC∑

i=1

φi
C(x)ui (71)

λ̃(x) =

nB∑

i=1

φi
B(x)λi (72)
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(a) Ω̃C|ΩB
= Ω̃B = Ω̃D|ΩB

(b) Ω̃C|ΩB
= Ω̃B ⊂ Ω̃D|ΩB

(c) Ω̃C|ΩB
⊂ Ω̃B = Ω̃D|ΩB

(d) Ω̃C|ΩB
6= Ω̃B 6= Ω̃D|ΩB

Fig. 22: Different configurations of the discretized subdomains in the bridging zone

where nD, nC and nB are respectively the total number of nodes in Ω̃D|ΩB
, Ω̃C and Ω̃B . φi

D, φi
C

and φi
B are the CNEM shape functions defined on D̃ad, Ũad and M̃, respectively. di are the particle

displacements, ui are the continuum nodal displacements and λi are the nodal Lagrange multipliers.

Using (70), (71) and (72), the discretized form of the global weak formulation (69) can be derived,

which can be written in matrix form as:

– Discrete model side
mα d̈ = f int

α + fext
α + fλ

Iα θ̈ = cint
α + cextα

(73)

with: fλ =
[
cL2
D + l2 cH1

D

]
λ = cD λ. cL2

D and cH1
D are the discrete L2 and H1 coupling matrices.

– Continuum model side

Mα ü = F
int
α + F

ext
α − F

λ (74)

with: F λ =
[
CL2

C + l2 CH1
C

]
λ = CC λ. CL2

C and CH1
C are the continuum L2 and H1 coupling

matrices.

– Bridging domain

CB
.
u− cB

.

d = 0 (75)

with: CB =
[
CL2

C

]t
+ l2

[
CH1

C

]t
and cB =

[
cL2
D

]t
+ l2

[
cH1
D

]t

The global system of equations consisting of (73), (74) and (75) is solved using the velocity Verlet

scheme. At each time step, ignoring the coupling conditions, predictive accelerations and velocities are

determined for the two models (DEM and CNEM). These quantities are then sent to a DEM-CNEM

Interface code to be corrected taking into account the coupling forces. Finally, the corrected quantities

are returned to the discrete and continuum codes to continue computation. This process is repeated

until the simulation is achieved.
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4.2 Parametric study of the coupling parameters

The main coupling parameters, which are studied in this subsection, are (Fig. 23):

– The junction parameter l (45).

– The weight function α.

– The width of the bridging region LB .

– The discretization of the approximated mediator space M̃ (or its associated geometric discretiza-

tion characteristic length hB).

Fig. 23: Main parameters of the bridging domain coupling approach

A 3D beam model is used for the dynamic study (Fig. 24), of which the length and the diameter

are L = 20mm and D = 2mm, respectively. This model is divided into two subdomains with a

bridging zone. The left subdomain is modeled by the CNEM approach using 626 nodes (the associated

characteristic length is about hC = 0.47mm) and fixed at the left end (x = 0). The right subdomain

is modeled by the DEM approach using 20 000 spherical particles having r = 0.05mm as mean

radius. Based on the discretization characteristic lengths of DEM and CNEM subdomains (hD = r

and hC), the cutoff frequencies of the two coupled models can be determined: fc
C = 1.9MHz and

fc
D = 18.2MHz (fc

D ≈ 10 fc
C). To generate a state of high frequency waves in propagation within

the beam and investigate the wave reflexion at the DEM-CNEM interface, the free end (x = L) is

submitted to a tensile loading with a very steep slope (Fig. 25). As shown in Figure 25b, the Fourier

spectrum contains powerful high frequency waves (greater than fc
C). The material of the beam is

the silica, whose the mechanical properties are given in Figure 24. The corresponding microscopic

properties of the cohesive beam bonds in the DEM approach are given in Table (3). To control the

wave propagation within the model, four check points are placed along this beam (Fig. 24) as follows:

– CnemCheckPoint: at the middle of the CNEM subdomain where the controlled quantities are

computed using the CNEM nodes in this zone

– OverlapCnemCheckPoint: at the middle of the bridging zone where the controlled quantities are

computed using only the CNEM nodes in this zone.
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– OverlapDemCheckPoint: at the middle of the bridging zone where the controlled quantities are

computed using only the DEM particles in this zone.

– DemCheckPoint: at the middle of the DEM subdomain where the controlled quantities are com-

puted using the DEM particles in this zone.

Fig. 24: Beam model for the parametric study

Fig. 25: Tensile loading used for the parametric study and its spectral analysis (computed from FFT)

Figure 26 presents the reference results obtained by fully DEM computation and fully CNEM

computation. Table 4 presents the mean displacement of the right end and the first three natural
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Young’s Modulus Poisson ratio dimensionless radius

Eµ = 265GPa νµ = 0.3 rµ =
rbeam

rmean
particle

= 0.71

Table 3: The microscopic properties of the cohesive beam bonds in the discrete subdomain

Umean (mm) f0 (Hz) f1 (Hz) f2 (Hz)

Theory 0.087 71 757 215 272 358 787

DEM 0.083 72 408 217 246 362 072
CNEM 0.088 71 359 214 023 356 491

Table 4: Comparison of DEM, CNEM and analytical results

frequencies. It can be seen that the results are in good agreement, and they are also in agreement

with the beam theory results. This ensures the equivalence of the two models.

Fig. 26: Free-end displacement obtained by fully DEM computation and fully CNEM computation

4.2.1 Influence of the junction parameter l

This parameter, arising from the application of the H1(ΩB) junction model ((45), with (η1, η2) =

(1, 1)), is mainly employed to compute the global coupling matrix A defined as:

A =
∆t

2
(CB [Mα]

−1
CC + cB [mα]

−1
cD) (76)

where ∆t is the computation time step. The influence of this parameter l on the coupling results will

therefore be investigated by studying its effect on the conditioning of A:

Cond(A) =‖ A ‖ . ‖ A
−1 ‖ (77)

which is an important indicator of the results accuracy. A coarse mediator space M̃ (coarse Ω̃B , i.e.

at the same order as Ω̃C) and continuous weight functions with ε = 0.05 (ε is defined in (54)) are used
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in this study. Figure 27 shows the conditioning of A with respect to l. The A conditioning decreases

with l and reaches a minimum for l = lopt. Beyond this value, the conditioning increases exponentially

as l increases. Therefore, the H1 coupling ((45), with (η1, η2) = (1, 1)) for a small value of l is better

than the L2 coupling (l = 0). However, contrary to what is often presented in the literature, the H1

coupling becomes worse if l exceeds some optimal value.

A

Fig. 27: Conditioning of A with respect to l
LB = 6mm, coarse mediator space and continuous weight functions with ε = 0.05

Table 5 presents the optimal values of the junction parameter (lopt) determined numerically for

different LB and hB (width and discretization characteristic length of Ω̃B , respectively). lopt prac-

tically does not change with the width of the bridging region, except for very fine mediator space

(case of hB = 32µm). However, this parameter depends significantly on hB. In the case of relatively

coarse mediator space (case of hB = 320µm), lopt is roughly of the same order of magnitude as hB. In

practice, the junction parameter l can be chosen as: l = hB . This choice generally results in acceptable

conditioning of A. In the remainder of this paper, l is set equal to lopt which is determined numerically

for each coupling parameters setting.

hB (µm) lopt (µm)

LB = 2mm
320 230
32 0.01

LB = 4mm
320 230
32 2.2

LB = 6mm
320 238
32 12

Table 5: Variation of lopt with the width LB and discretization characteristic length hB of the bridging
subdomain.
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4.2.2 Influence of the weight functions α

The influence of the weight function α is studied in this subsection. The other coupling parameters

are chosen as follow: a fine mediator space M̃ (fine discretization of Ω̃B , i.e. at the same order as the

discretization of Ω̃D) and LB = 2mm.

Constant weight functions α = ᾱ = 0.5

The DEM and CNEM models are supposed equivalent in the bridging region, i.e. weighted in the

same manner (Fig. 15a). Figure 28 presents the free-end displacement obtained in this case. The

mean displacement obtained using the coupling method is Umean = 0.081mm. This is in agreement

with the reference results (Tab. 4). However, the temporal coupling displacement (Fig. 28) presents

several deviations with regard to the reference curves. To analyze this coupling result and to determine

the causes of these deviations, the velocities at the different check points (Fig. 24) have been plotted

for the first round trip of the wave propagation (Fig. 29). This figure shows that the high frequency

waves (HFWs) initially captured at the “DemCheckPoint” do not appear in “OverlapDemCheckPoint”

or “OverlapCnemCheckPoint”. In other words, the major part of the HFWs are reflected without

entering the bridging region. This explains the deviation in the temporal displacement each time

the global wave crosses the bridging region. Thus, constant weight functions are not a good choice

for dynamic simulations. Indeed, the projection mechanism, which occurs in ΩB , cannot dampen

the HFWs, and additional filtering is required in this case. In contrast, in the case of static studies,

Guidault et al. [45,46] have shown that constant weight functions can be used with H1 coupling.

Fig. 28: Free-end displacement obtained using DEM, CNEM and the coupling method; LB = 2mm,
fine mediator space and constant weight functions α = 0.5
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Fig. 29: Linear velocities at the check points for the first round trip; LB = 2mm, fine mediator space
and constant weight functions α = 0.5

Constant weight functions α 6= 0.5

Keeping constant weight functions, the influence of the weight constant on the wave propagation is

analyzed. Two cases are studied here: the first case makes the discrete model more influential in the

bridging region (α = 0.3), whereas the opposite trend is investigated in the second case (α = 0.8),

the continuum model being dominating (α = 0.8) in this zone. The associated results are presented

in Figure 30.

Fig. 30: Free-end displacement obtained using the coupling method with different constant weight
functions: α = 0.3, α = 0.5 and α = 0.8; LB = 2mm and fine mediator space
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A large difference between the results is observed. In the first case (α = 0.3), the magnitude of

the free-end displacement is greater than the one obtained using α = 0.5. However, it is smaller in

the case of α = 0.8. To provide an explanation for these results, the temporal velocities at the check

points are presented in Figure 31.

For α = 0.8, a portion of the global incident wave is positively reflected at the interface between the

two models without entering the bridging zone. Furthermore, only a complementary part is transmitted

in the CNEM model. Quantitatively, the transmission and reflection coefficients are tnum = 0.44

and rnum = 0.56, respectively. By analogy with the wave propagation between media with different

acoustic impedances, we define the transmission and reflection coefficients in terms of α and ᾱ as

follows: tth = 2 ᾱ
α+ᾱ

and rth = α−ᾱ
α+ᾱ

. It can be verified that tnum and rnum are of the same order of

magnitude as tth = 0.4 and rth = 0.6, respectively.

Fig. 31: Linear velocities at the check points for different constant weight functions: α = 0.3, α = 0.5
and α = 0.8; LB = 2mm and fine mediator space

For α = 0.3, the same reflection mechanism takes place but with a negative coefficient. Indeed,

the velocity magnitude of the transmitted wave (measured at “CnemCheckPoint”) is greater than the

velocity magnitude of the incident wave (initially measured at “DemCheckPoint”). Also, the numerical

transmission and reflection coefficients, tnum = 1.44 and rnum = −0.44, are of the same order of
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magnitude as tth = 1.4 and rth = −0.4. Then, for the case of constant weighting, the use of α 6= 0.5

is worse with regard to the reflection phenomenon. In this case, a part of the global incident wave

is reflected at the interface between the models (not only the HFWs which are not supported by the

coarse scale model). This result proves that the 1D static studies available in the literature cannot be

used to perform dynamic coupling. Guidault et al. [45] have shown that, in statics and using a fine

mediator space, the solutions do not depend on the weight functions.

Continuous weight functions

As explained earlier, the weight functions must not vanish at the boundary of the bridging zone ∂ΩB

(for the weighted lumped mass matrices to be invertible), and a small value ε must be applied rather

than zero at ∂ΩB . Before studying the influence of the continuous weight functions, the influence of

ε is investigated. Figure 32 presents the free-end displacement using continuous weight functions for

different ε. This parameter ε, when less than 0.05, has no practical influence on the results, but a very

small ε can lead to instability problems. Indeed, as shown in Table 6, the smaller the ε, the greater

the conditioning of the coupling matrix A becomes.

Fig. 32: Free-end displacement obtained using the coupling method for different values of ε; LB =
2mm, fine mediator space and continuous weight functions

ε 0.05 0.005 0.0005

Cond [A (lopt)] 2.53e4 8.93e4 5.67e5

Table 6: Conditioning of A with respect to ε; LB = 2mm, fine mediator space, continuous weight
functions

In the remainder of this section, ε = 0.05 is used each time a continuous weight function is

applied. Figure 33 shows the free-end displacement for the case of a linear continuous weight function

(Fig. 15b). The associated velocities measured at the different check points are presented in Figure
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34. No high frequency waves (HFWs) are reflected at the interface between the two models. Using

continuous weight functions, the HFWs enter the bridging zone, and then, they are dampened by

the projection of the fine space solution (from the DEM model) onto the coarse space solution (from

the CNEM model). Figure 34b evidences that with a fine mediator space, a small bridging zone

is sufficient to cancel out all of the HFWs. The use of a continuous weight function significantly

improves the results (Fig. 33). However, a small deviation from the reference results still persists

and becomes greater each time the wave travels back (CNEM-DEM direction). Because of the very

fine discretization of the DEM subdomain, the weight of the particles in the bridging zone decreases

smoothly when approaching the CNEM domain. By examining the first round-trip in Figure 33, it

can be observed that practically no deviation from the reference is noted when the wave travels from

the DEM subdomain to the CNEM subdomain. Therefore, the incident wave correctly crosses the

interface between the pure DEM (ΩD\ΩB) and the bridging zone (ΩB). However, in the CNEM

subdomain, a coarse discretization is used. The jump between the weight values of two adjacent nodes

is relatively large. Thus, the same reflection mechanism, observed using constant weight functions

with α 6= 0.5, occurs when the wave travels back (CNEM-DEM direction). To enhance the results,

one can increase the width of the bridging zone to reduce the slope of the weight functions and so

the weight jump between adjacent nodes. Another solution consists in using continuous differentiable

weight functions (Fig. 15c) to reduce the weight jump in the vicinity of ∂ΩB (boundary of the bridging

zone). Figures 42, 43 and 44 present the results using the two solutions. The wave correctly crosses ΩB

without any significant deviation. In conclusion, the continuous differentiable weight functions (Fig.

15c) are best adapted to weight the different energies in the bridging zone. These functions ensure a

better regularity (smoothing) in the vicinity of the ∂ΩB , and then the HFWs cross the bridging zone

where they are dampened, provided that LB and M̃ are well-chosen. Otherwise, the same reflection

mechanism can take place but for other reasons as will be explained in the next subsections.

Fig. 33: Free-end displacement obtained using DEM, CNEM and the coupling method; LB = 2mm,
fine mediator space and continuous weight functions
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Fig. 34: (a) Linear velocities at the different check points for the case of continuous α; (b) comparison
of linear velocities at the “DemCheckPoint” obtained using continuous and constant (α = 0.5) weight
functions; LB = 2mm and fine mediator space

4.2.3 Influence of the approximated mediator space M̃

In the previous subsection, a fixed fine mediator space has been used. In such a case, the fine scale

model velocities are practically locked on those of the coarse scale model (Fig. 35a). Indeed, the velocity

curve at the “OverlapDemCheckPoint” is superimposed on that at the “OverlapCnemCheckPoint”. The

same locking phenomenon is noted in the literature when the third configuration (Fig. 22c) is used

[45]. Now, to study the influence of M̃ on the coupling results, a coarse mediator space (coarse

discretization of Ω̃B , i.e. at the same order as the discretization of Ω̃C) is used. As shown in Figure

35b, the equality of velocities in the bridging region is satisfied only in a weak sense and not in

each node of the mediator space. This allows the fine model (DEM model) to correctly act in ΩB .

However, in this case a small bridging zone is insufficient to correctly transmit the global incident

wave and cancel the HFWs. A solution to reduce the wave reflections at the interface between the two

models is to use a large bridging zone (large LB). As a consequence of this solution, a large discrete

subdomain has to be used which is costly and cumbersome. However, contrary to previous works on

coupling approaches, the discretization of the mediator space M̃ can be made independently from the

discrete and continuum models in this work. Therefore, an intermediate discretization of M̃, between

the discretization of the continuum and discrete models, can be used. As it will be seen in the next
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subsections, for any choice of LB , there is an optimal discretization of the mediator space hB that

cancels the HFWs in the bridging region.

Fig. 35: Velocities comparison in the bridging zone using fine and coarse mediator spaces; LB = 2mm,
continuous weight function and ε = 0.05

4.2.4 Influence of the width of the bridging zone LB

As seen in the previous subsection, the influence of the bridging width (LB) on the coupling results

depends on the approximated mediator space M̃. Figures 36 and 37 provide the coupling results for

different LB using fine and coarse mediator spaces, respectively. In the case of fine M̃, the width of

the bridging region has no significant influence on the results because of the locking phenomenon.

In such a case, the DEM particles are strongly constrained in the bridging region which in turn will

represent a rigid wall for the HFWs, regardless of LB . However, in the case of coarse M̃, the discrete

particles can somewhat freely act in the bridging region. Therefore, using a small LB (narrow bridging

region), the interface between the two models will act like a free surface for the HFWs. In this case,

a large bridging region is required to sufficiently constrain the DEM particles in the bridging region

and then to reduce the HFWs reflections. Figure 37 shows that, in the case of coarse mediator space,

the coupling results are better as LB increases.
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Fig. 36: Free-end displacements obtained using the coupling method for LB = 2mm, LB = 4mm and
LB = 6mm; Fine mediator space , continuous weight functions, ε = 0.05

Fig. 37: Free-end displacements obtained using the coupling method for LB = 2mm, LB = 4mm and
LB = 6mm; Coarse mediator space , continuous weight functions and ε = 0.05

4.2.5 Dependence between LB and M̃

This subsection highlights the dependence between LB and M̃. First, the discretization characteristic

length of the bridging subdomain hB will be investigated. The width of the bridging region is fixed at

LB = 2mm. Also, to investigate the effect of the discretization characteristic lengths of the continuum

and discrete subdomains (hC and hD, respectively) on hB , these parameters are first chosen as:

hC = 5hD. Figure 38 shows the free-end displacements for different choice of hB . According to

this figure, the optimal value of hB is hB = 2hD. Indeed, no significant deviation is pointed in

the associated result. However, inward deviations and outward deviations are noted in the case of
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hB = hD and hB = 3hD, respectively. The inward deviations report that the DEM particles are

strongly constrained; whereas the outward deviations indicate that these particles are not sufficiently

constrained. Using hC = 10hD, the same conclusions and remarks, as for hC = 5hD, have been noted

(Fig. 39). However, in this case, the optimal value of hB is hB = 3hD. This value depends, inter alia,

on the ratio between hD and hC . The larger this ratio, the larger the optimal value of hB becomes.

To analyze the influence of LB on the optimal value of hB, LB = 6mm is then used when

hC = 10hD is held fixed. Figure 40 presents the associated results. The same conclusions and remarks,

as for LB = 2mm, are pointed. However, in the present case, the optimal value is hB = 9hD and the

deviation mechanisms are much less sensitive to hB . In conclusion, the optimal value of hB depends

also on LB , but the choice of this parameter is less sensitive when large bridging region is used.

Fig. 38: Influence of the discretization characteristic length of the bridging subdomain hB ; LB = 2mm
and hC = 5hD
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Fig. 39: Influence of the discretization characteristic length of the bridging subdomain hB ; LB = 2mm
and hC = 10hD

Fig. 40: Influence of the discretization characteristic length of the bridging subdomain hB ; LB = 6mm
and hC = 10hD

4.3 Choice of the coupling parameters in practice

In a general case there is not an obvious method to determine, in a single way, the various coupling

parameters to avoid wave reflections. This subsection gives several recommendations and trends to

choose correctly these parameters. To minimize the conditioning of the coupling matrix A, the H1



60 Mohamed Jebahi et al.

Beam theory DEM CNEM Coupling

Tension
Ux mean(mm) 4.40e− 3 4.44e− 3 4.49e− 3 4.61e− 3

f0(Hz) 14 351 14 235 14 262 14 425

Bending
Uy mean(mm) 5.85e− 1 5.86e− 1 6.27e− 1 6.13e− 1

f0(Hz) 1 606 1 594 1 557 1 595

Torsion
θx mean(mm) 2.05e− 3 2.34e− 3 – 2.32e− 3

f0(Hz) 9 382 9 252 – 9 106

Table 7: Comparison of results; LB = 10mm, coarse mediator space , continuous differentiable weight
functions, ε = 0.05

coupling with l = lopt is recommended. lopt can be chosen at the some order of magnitude as the

discretization characteristic length of the bridging subdomain (lopt ≈ hB). Although, in the case of

very fine mediator space M̃, the optimal value of l is not at the same order of magnitude as hB , the

choice of l ≈ hB generally results in acceptable conditioning of A. The weight functions must have

at least C0 continuity in the bridging region, but more regular functions (C1 continuity or more) are

recommended. Indeed, with constant weight functions, the high frequency waves (HFWs) are reflected

without entering the bridging region and cannot be dampened by the projection mechanism which

occurs in this region. The choice of LB and M̃ is more challenging. Indeed, these parameters depend

on each other, and on the discretization of the discrete and continuum models. In practice, the choice of

these parameters can be made as follows: the discrete and continuum models are discretized according

to the physical effects that have to be captured; then, the width of the bridging region can be fixed as

narrow as possible, containing sufficient number of CNEM nodes and DEM particles; finally, M̃ can

be chosen such that hD ≤ hB ≤ hC . Using an arbitrary choice of hB banded between hD and hC ,

a dynamic simulation can be performed to control the wave propagation between the models; if an

inward deviation is found when the wave crossing the interface, hB must be increased; if an outward

deviation is found, hB must be decreased; Otherwise, the optimal value of hB is luckily used.

4.4 Applications

The previous parametric study using 3D beam submitted to a dynamic tensile loading has highlighted

several recommendations to perform a correct coupling. In this subsection, the results of this study are

used to apply the DEM-CNEM coupling approach on several elementary tests: 3D beams submitted

to dynamic tension, dynamic bending, dynamic torsion and initial velocity loading. The length and

diameter of these beams are respectively L = 100mm and D = 20mm (L/D = 5). The DEM method

is applied only for the portion located 20 mm from the right end (the section located at x = L) and

the remainder of the domain is modeled using the CNEM method (Fig. 41). The different coupling

parameters are chosen as follows: LB = 10mm, continuous differentiable weight functions, ε = 0.05,

coarse mediator space, l = hB .
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Fig. 41: Validation model

Figures 42 and 43 present the temporal free-end displacements with respect to the x − axis and

y − axis using respectively the tensile and bending loading. The deviation from the reference, as

observed in the previous simulations when the wave crosses ΩB , disappeared in the present results.

Figure 44 presents the temporal free-end rotation about the x− axis using the torsional loading. The

coupling results are in good agreement with the DEM results (Tab. 7). Finally, the coupling method

has been tested using an initial velocity loading (Test 4 in Figure 41). Figure 45 presents the associated

free-end displacement with respect to x − axis. The coupling result is comparable to the reference

one, obtained from fully DEM computation.
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Fig. 42: Tensile loading: Free-end displacements Ux mean obtained by DEM, CNEM and the coupling
method; LB = 10mm, coarse mediator space , continuous differentiable weighting and ε = 0.05

Fig. 43: Bending loading: Free-end displacements Uy mean obtained by DEM, CNEM and the coupling
method; LB = 10mm, coarse mediator space , continuous differentiable weighting and ε = 0.05
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Fig. 44: Torsional loading: Free-end rotation θx mean obtained by DEM, CNEM and the coupling
method; LB = 10mm, coarse mediator space , continuous differentiable weight functions and ε = 0.05

Fig. 45: Initial velocity loading: Free-end displacement Ux mean obtained by DEM and the coupling
method; LB = 10mm, coarse mediator space , continuous differentiable weight functions and ε = 0.05
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5 Conclusions

In the context of numerical simulation, four scales can be distinguished: nanoscale, microscale, mesoscale

and macroscale. For each scale, efficient computational methods have been developed to handle the

relevant phenomena. An overview of these methods is given in section 2. These methods can be divided

into two classes: discrete methods (DMs) and continuum methods (CMs). The discrete methods are

used to study phenomena ranging from nanoscale to mesoscale. These methods give generally very

accurate results, but are very time-consuming and can only be applied for small systems. The contin-

uum methods are used to study macroscopic phenomena. Although less accurate than the DMs, these

methods are relatively inexpensive and can be applied for large systems. The features and advan-

tages of the different methods of these classes are largely complementary. Therefore, several coupling

approaches involving numerical methods of different nature have been proposed so as to strengthen

their advantages and to avoid their drawbacks. As shown in section 2, these approaches can be divided

into three categories: discrete-discrete coupling methods, continuum-continuum coupling methods and

discrete-continuum coupling methods. The last category is of particular interest in multiscale mod-

eling of complex dynamic problems. Indeed, most of these problems involve multiscale phenomena

that require, on one scale, a very accurate and computationally expensive description (by discrete

method), and on another scale, a coarser description (by continuum method) to avoid prohibitively

large computation. The discrete-continuum coupling methods can be of different nature: hierarchical,

concurrent or hybrid hierarchical-concurrent. The hierarchical coupling approaches are adapted for

problems in which decoupled or weakly coupled multiscale phenomena are involved. The concurrent

approaches are well adapted for problems involving highly dependent multiscale phenomena. The

hybrid hierarchical-concurrent approaches, which combine the features of the hierarachical and con-

current approaches, are used for problems in which the multiscale phenomena are weakly coupled up

to a certain response limit, and then highly dependent. The concurrent coupling approaches are best

suited to study complex dynamic problems, which generally involve highly dependent phenomena.

The most used techniques to couple concurrently discrete and continuum methods are reviewed in

section 3. Among them, the bridging domain (BD) technique is a good candidate to study properly

complex problems in dynamics. Indeed, this technique can avoid high frequency wave reflections at the

interface between the coupled models without any additional filtering or damping. This is particularly

true when the different BD parameters are well set up. To corroborate the existent works aiming

to simplify the setting of these parameters in practice, a 3D dynamic study of these parameters is

proposed in this paper. Based on this study, several recommendations have been drawn to address

this issue.
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