1,841 research outputs found

    Flexural behaviours of Engineered Cementitious Composites – High strength steel composite beams

    Full text link
    Since the compressive strain of normal strength concrete (NSC) (0.23 – 0.3%) is too low to work compatibly with high strength steel (HSS) with typical yield strain greater than 0.35%, Engineered Cementitious Composites (ECC) which generally has a minimum compressive strain of 0.5%, is an attractive alternative to replace NSC when constructing composite beams using HSS sections. This study investigated experimentally the flexural behaviours of composite beams comprising HSS I-section and hybrid Polyethylene-steel fibres (PE-ST) ECC slab. Shear interactions between the HSS beam and the PE-ST ECC slab was provided by normal profiled steel sheeting (PSS) and headed shear studs. Four composite beams including three ECC-HSS beams and one NSC-HSS beam were tested under four-point bending until failure. The test results indicated that while the flexural capacity of ECC-HSS beams only showed a slight improvement, its ductility was significantly enhanced when comparing with the NSC-HSS beam. All ECC-HSS beams failed in a ductile manner and gradual softening behaviours were observed after the peak load. In contrast, the NSC-HSS beam showed a less ductile failure mode with a sudden crushing of NSC and a sharp drop of bending resistance after the peak load. To complement the test results, a 3D nonlinear finite element (FE) model was also developed and validated against the experimental results. Well agreements between the FE and test results were observed. This confirmed that the FE model could be employed to evaluate the general behaviours of ECC-HSS composite beams

    The impact of frailty on the effectiveness and safety of intensive glucose control and blood pressure-lowering therapy for people with type 2 diabetes: Results from the ADVANCE trial

    Full text link
    OBJECTIVE To develop a frailty index (FI) and explore the relationship of frailty to subsequent adverse outcomes on the effectiveness and safety of more intensive control of both blood glucose and blood pressure (BP), among participants with type 2 diabetes in the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial. RESEARCH DESIGN AND METHODS Cox proportional hazard models were used to estimate the effectiveness and safety of intensive glucose control and BP intervention according to frailty (defined as FI >0.21) status. The primary outcomes were macro- and microvascular events. The secondary outcomes were all-cause mortality, cardiovascular mortality, severe hypoglycemia, and discontinuation of BP treatment due to hypotension/dizziness. RESULTS There were 11,140 participants (mean age, 65.8 years; 42.5% women, 25.7% frail). Frailty was an independent predictor of all primary outcomes and secondary outcomes. The effect of intensive glucose treatment on primary outcomes showed some evidence of attenuation in the frail: hazard ratios for combined major macro- and microvascular events 1.03 (95% CI 0.90-1.19) in the frail versus 0.84 (95% CI 0.74-0.94) in the nonfrail (P = 0.02). A similar trend was observed with BP intervention. Severe hypoglycemia rates (per 1,000 person-years) were higher in the frail: 8.39 (6.15-10.63) vs. 4.80 (3.84-5.76) in nonfrail (P < 0.001). There was no significant difference in discontinuation of BP treatment between frailty groups. CONCLUSIONS It was possible to retrospectively estimate frailty in a trial population, and this FI identified those at higher risk of poor outcomes. Participants with frailty had some attenuation of benefit from intensive glucose-lowering and BP-lowering treatments

    On-demand semiconductor single-photon source with near-unity indistinguishability

    Full text link
    Single photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness, and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence (RF) has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed RF single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3-ps laser pulses. The pi-pulse excited RF photons have less than 0.3% background contributions and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.Comment: 11 pages, 11 figure

    Informing the design of a national screening and treatment programme for chronic viral hepatitis in primary care: qualitative study of at-risk immigrant communities and healthcare professionals

    Get PDF
    n Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise statedThis paper presents independent research funded by the National Institute for Health Research (NIHR) under the Programme Grants for Applied Research programme (RP-PG-1209-10038).

    Vitamin D-tour : cognition and depression: the role of vitamin D and its interplay with glucose homeostasis

    Get PDF
    According to recent estimations approximately 35.6 million people have dementia worldwide. Globally, 350 million people experience one or more depressive episodes during their life. As the therapeutic options for dementia and depression are limited, these conditions form a major challenge for public health and society. More and more researchers have initiated research on potential preventive factors for dementia and depression, including the potential effects of nutritional factors. The aim of this PhD-thesis was to study the role of vitamin D and its potential interplay with glucose homeostasis, in the development of cognitive decline and depression, using epidemiological data as well experimental animal data. Chapter 2 recapitulates a debate between vitamin D experts that was organized to make a step towards the harmonization on the formulation of optimal vitamin D intake levels and serum 25(OH)D concentrations across Europe. It was concluded that based on the current evidence-base 25(OH)D concentrations ≥50 nmol/L are sufficient with respect to optimal bone health. For health outcomes beyond bone health evidence was considered insufficient to formulate optimal levels. In order to achieve and maintain a 25(OH)D concentration ≥50 nmol/L, older adults aged ≥65 years were recommended to adhere to a vitamin D intake of 20 μg/day. Chapter 3 shows that there is a high prevalence of 25(OH)D inadequacy in a population of Dutch older adults that participated in the B-PROOF study (n=2857), namely 45% had 25(OH)D concentrations In chapter 4 the associations between 25(OH)D status and global cognitive performance (n=116), depressive symptoms (n=118), and surrogate markers of glucose intolerance (n=593) were evaluated using data of European adults aged 70-75 years. None of the associations reached significance. Studying the potential role of vitamin D in domain-specific cognitive performance and depression in 127 Dutch pre-frail and frail older adults aged ≥65 years (chapter 5), showed an association between 25(OH)D concentration and executive functioning, and a tendency towards an association with information processing speed. Stratification for ‘low’ and ‘high’ fasting glucose concentrations did not suggest an interaction between vitamin D and glucose homeostasis in the association with domain-specific cognitive performance. Moreover, adding fasting glucose or insulin did not substantially influence the associations between 25(OH)D status and domain-specific cognitive performance, and hence a mediation effect of glucose homeostasis was considered unlikely. We furthermore observed associations of 25(OH)D status with attention and working memory (n=787) (chapter 6), depression (n=2839) (chapter 7) and grey matter volume of the brain (n=217) (chapter 8) in a population community-dwelling Dutch older adults aged ≥65 years. Again, these studies did not provide evidence that the associations were modified or mediated by glucose intolerance. However, it should be emphasized that glucose intolerance in these three chapters was defined sub-optimally, specifically using blood samples that may have been collected in a non-fasting state, or by using self-reported diabetes data. Hence, the mediation and interaction effects should be interpreted cautiously. Finally, chapter 9 shows the results of a proof of principle study on the effect of a long-term vitamin D deficiency on cognitive decline and emotional reactivity in old C57BL/6j mice. Modest tendencies were shown for a relation between vitamin D and spatial learning, but these tendencies did not reach significance. Vitamin D deficiency did not affect recognition memory, spatial memory or emotional reactivity. Mice that received a higher dietary fat load, which was given to induce an impaired glucose tolerance, did not respond differently to a vitamin D deficiency than mice that received a low fat diet did. Overall, it is concluded that the evidence for an effect of vitamin D on cognitive performance/decline, depression or brain volume is insufficient to formulate disease specific cut-off values for vitamin D intake or 25(OH)D status. However, given the high prevalence of 25(OH)D concentrations <50 nmol/L we do call for a more active promotion of the current vitamin D intake recommendations.</p

    Comparison of two dengue NS1 rapid tests for sensitivity, specificity and relationship to viraemia and antibody responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue is a major public health problem in tropical and subtropical countries. Rapid and easy diagnosis of dengue can assist patient triage and care-management. The detection of DENV NS1 on rapid lateral flow tests offers a fast route to a presumptive dengue diagnosis but careful evaluations are urgently needed as more and more people use them.</p> <p>Methods</p> <p>The sensitivity and specificity of the Bio-Rad NS1 Ag Strip and SD Dengue Duo (NS1/IgM/IgG) lateral flow rapid tests were evaluated in a panel of plasma samples from 245 Vietnamese patients with RT-PCR confirmed dengue and 47 with other febrile illnesses.</p> <p>Results</p> <p>The NS1 rapid tests had similar diagnostic sensitivities (respectively 61.6% and 62.4%) in confirmed dengue cases but were 100% specific. When IgM/IgG results from the SD Dengue Duo were included in the test interpretation, the sensitivity improved significantly from 62.4% with NS1 alone to 75.5% when NS1 and/or IgM was positive and 83.7% when NS1 and/or IgM and/or IgG was positive. Both NS1 assays were significantly more sensitive for primary than secondary dengue. NS1 positivity was associated with the underlying viraemia as NS1-positive samples had a significantly higher viraemia than NS1-negative samples.</p> <p>Conclusions</p> <p>These data suggest that the NS1 test component of these assays are highly specific and have similar levels of sensitivity. The IgM parameter in the SD Duo test improved overall test sensitivity without compromising specificity. The SD Dengue Duo lateral flow rapid test deserves further prospective evaluation in dengue endemic settings.</p

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
    corecore