7 research outputs found

    A stability criterion for the non-linear wave equation with spatial inhomogeneity

    No full text
    In this paper the non-linear wave equation with a spatial inhomogeneity is considered. The inhomogeneity splits the unbounded spatial domain into three or more intervals, on each of which the non-linear wave equation is homogeneous. In such setting, there often exist multiple stationary fronts. In this paper we present a necessary and sufficient stability criterion in terms of the length of the middle interval(s) and the energy associated with the front in these interval(s). To prove this criterion, it is shown that critical points of the length function and zeros of the linearisation have the same order. Furthermore, the Evans function is used to identify the stable branch. The criterion is illustrated with an example which shows the existence of bi-stability: two stable fronts, one of which is non-monotonic. The Evans function also give a sufficient instability criterion in terms of the derivative of the length function

    Linear and sigmoidal fuzzy cognitive maps: An analysis of fixed points

    No full text
    Fuzzy cognitive mapping is commonly used as a participatory modelling technique whereby stakeholders create a semi-quantitative model of a system of interest. This model is often turned into an iterative map, which should (ideally) have a unique stable fixed point. Several methods of doing this have been used in the literature but little attention has been paid to differences in output such different approaches produce, or whether there is indeed a unique stable fixed point. In this paper, we seek to highlight and address some of these issues. In particular we state conditions under which the ordering of the variables at stable fixed points of the linear fuzzy cognitive map (iterated to) is unique. Also, we state a condition (and an explicit bound on a parameter) under which a sigmoidal fuzzy cognitive map is guaranteed to have a unique fixed point, which is stable. These generic results suggest ways to refine the methodology of fuzzy cognitive mapping. We highlight how they were used in an ongoing case study of the shift towards a bio-based economy in the Humber region of the UK. © 2013 Elsevier B.V. All rights reserved

    Stability of stationary fronts in a non-linear wave equation with spatial inhomogeneity

    No full text
    We consider inhomogeneous non-linear wave equations of the type u =u +V (u, x)-αu (α≥0). The spatial real axis is divided in intervals I , i=0,..., N+1 and on each individual interval the potential is homogeneous, i.e., V(u, x)=V (u) for x∈I . By varying the lengths of the middle intervals, typically one can obtain large families of stationary front or solitary wave solutions. In these families, the lengths are functions of the energies associated with the potentials V . In this paper we show that the existence of an eigenvalue zero of the linearisation operator about such a front or stationary wave is related to zeroes of the determinant of a Jacobian associated to the length functions. Furthermore, the methods by which the result is obtained is fully constructive and can subsequently be used to deduce the stability and instability of stationary fronts or solitary waves, as will be illustrated in examples. © 2012 Elsevier Inc

    Pinned fluxons in a Josephson junction with a finite-length inhomogeneity

    Get PDF
    We consider a Josephson junction system installed with a finite length inhomogeneity, either of micro-resistor or micro-resonator type. The system can be modelled by a sine-Gordon equation with a piecewise-constant function to represent the varying Josephson tunneling critical current. The existence of pinned fluxons depends on the length of the inhomogeneity, the variation in the Josephson tunneling critical current and the applied bias current. We establish that a system may either not be able to sustain a pinned fluxon, or - for instance by varying the length of the inhomogeneity - may exhibit various different types of pinned fluxons. Our stability analysis shows that changes of stability can only occur at critical points of the length of the inhomogeneity as a function of the (Hamiltonian) energy density inside the inhomogeneity - a relation we determine explicitly. In combination with continuation arguments and Sturm-Liouville theory, we determine the stability of all constructed pinned fluxons. It follows that if a given system is able to sustain at least one pinned fluxon, a microresistor has exactly one pinned fluxon, i.e. the system selects one unique pinned stable pinned configuration, and a microresonator has at least one stable pinned configuration. Moreover, it is shown that both for micro-resistors and micro-resonators this stable pinned configuration may be non-monotonic - something which is not possible in the homogeneous case. Finally, it is shown that results in the literature on localised inhomogeneities can be recovered as limits of our results on micro-resonators. © 2011 Cambridge University Press

    Pinned fluxons in a Josephson junction with a finite length inhomogeneity

    Get PDF
    We consider a Josephson junction system installed with a finite length inhomogeneity, either of microresistor or of microresonator type. The system can be modelled by a sine-Gordon equation with a piecewise-constant function to represent the varying Josephson tunneling critical current. The existence of pinned fluxons depends on the length of the inhomogeneity, the variation in the Josephson tunneling critical current and the applied bias current. We establish that a system may either not be able to sustain a pinned fluxon, or - for instance by varying the length of the inhomogeneity - may exhibit various different types of pinned fluxons. Our stability analysis shows that changes of stability can only occur at critical points of the length of the inhomogeneity as a function of the (Hamiltonian) energy density inside the inhomogeneity - a relation we determine explicitly. In combination with continuation arguments and Sturm-Liouville theory, we determine the stability of all constructed pinned fluxons. It follows that if a given system is able to sustain at least one pinned fluxon, there is exactly one stable pinned fluxon, i.e. the system selects one unique stable pinned configuration. Moreover, it is shown that both for microresistors and microresonators this stable pinned configuration may be non-monotonic - something which is not possible in the homogeneous case. Finally, it is shown that results in the literature on localised inhomogeneities can be recovered as limits of our results on microresonators
    corecore