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We consider a Josephson junction system installed with a finite length inhomogeneity, either

of micro-resistor or micro-resonator type. The system can be modelled by a sine-Gordon

equation with a piecewise-constant function to represent the varying Josephson tunneling

critical current. The existence of pinned fluxons depends on the length of the inhomogeneity,

the variation in the Josephson tunneling critical current and the applied bias current. We

establish that a system may either not be able to sustain a pinned fluxon, or – for instance

by varying the length of the inhomogeneity – may exhibit various different types of pinned

fluxons. Our stability analysis shows that changes of stability can only occur at critical points

of the length of the inhomogeneity as a function of the (Hamiltonian) energy density inside

the inhomogeneity – a relation we determine explicitly. In combination with continuation

arguments and Sturm–Liouville theory, we determine the stability of all constructed pinned

fluxons. It follows that if a given system is able to sustain at least one pinned fluxon, a

microresistor has exactly one pinned fluxon, i.e. the system selects one unique pinned stable

pinned configuration, and a microresonator has at least one stable pinned configuration.

Moreover, it is shown that both for micro-resistors and micro-resonators this stable pinned

configuration may be non-monotonic – something which is not possible in the homogeneous

case. Finally, it is shown that results in the literature on localised inhomogeneities can be

recovered as limits of our results on micro-resonators.

Key words: Josephson junction; Inhomogeneous sine-Gordon equation; Pinned fluxon; Sta-

bility

1 Introduction

In this paper, we consider a sine–Gordon-type equation describing the gauge invariant

phase difference of a long Josephson junction

φtt = φxx − D sin(φ) + γ − αφt, (1.1)

where x and t are the spatial and temporal variable, respectively, φ(x, t) is the Josephson

phase difference of the junction, α > 0 is the damping coefficient due to normal electron

https://doi.org/10.1017/S0956792511000301 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792511000301


202 G. Derks et al.

flow across the junction and γ is the applied bias current. The parameter D represents the

Josephson tunneling critical current, which can vary as a function of the spatial variable.

When D is constant (without loss of generality, we can take D = 1) and there is no

imposed current and dissipation, i.e. γ = α = 0, the system (1.1) is completely integrable [1]

and has a family of travelling kink solutions of the form

φ(x, t) = φ0

(
x+ vt+ x0√

1 − v2

)
, with φ0(ξ) = 4 arctan(eξ) for any |v| < 1. (1.2)

In the study of Josephson junctions, this kink represents a fluxon, i.e. a magnetic field

with one flux quantum Φ0 ≈ 2.07 × 10−15 Wb. If there is a small induced current and

dissipation but no inhomogeneity, then there is a unique travelling fluxon whose wave

speed in lowest order is given by v = π√
16(α/γ)2+π2

and no stationary fluxons exist, see,

e.g. [11].

An inhomogeneous Josephson critical current in the form of D = 1 + d δ(x), where

δ(x) is the Dirac delta function, was first suggested in [25]. Using a piecewise constant

representation, the inhomogeneous D can also be written by the step function

D(x;L, d) =

{
d, |x| < L,

1, |x| > L,
(1.3)

in the limit L → 0. Note that as (1.1) without inhomogeneity is translationally invariant,

it does not matter where the inhomogeneity is placed. It was shown in [25] that due to

the local perturbation, stationary fluxons can exist even if an imposed current is present

(γ� 0) and that a travelling fluxon (1.2) can be pinned by the inhomogeneity. About a

decade after the first analysis of this phenomenon, it is shown in [19] that the interaction

between a soliton and an inhomogeneity can be non-trivial, i.e. an attractive impurity,

which is supposed to pin an incoming fluxon, could totally reflect the soliton provided

that there is no damping in the system. Recently it is proven that the final state at

which a soliton exits a collision depends in a complicated fractal way on the incoming

velocity [13].

So far almost all of the analytical and theoretical work considers the local inhomogeneity

described by a delta function, i.e. L → 0 [13, 18, 19, 25]. Yet the length of an inhomo-

geneity in real experiments is varying from (in dimensionless unit) 0.5 [33] to 5 [2, 31].

Current advances, such as superconductor–insulator–ferromagnet–superconductor (SIFS)

technology [22, 38], can also be used to create Josephson junctions with defects whose

lengths 2L and strengths d are highly controllable (see [32, 39, 40] and references therein

for reviews of the experimental setups). Therefore such inhomogeneities are not well

described by delta functions. Kivshar et al. [17] have considered the time-dependent

dynamics of a Josephson fluxon in the presence of this more realistic setup, i.e. fluxon

scattering that takes into account the finite size of the defect L > 0, within the framework

of a perturbation theory, i.e. when α, γ are small and d ≈ 1. Piette and Zakrzewski [30]

recently studied the scattering of the fluxon on a finite inhomogeneity, extending [13, 19]

to finite length defects in the case when neither applied bias current nor dissipation is

present. The existence and stability problem of pinned fluxons in finite Josephson junctions

with inhomogeneity (1.3) has been considered numerically by Boyadjiev et al. [3, 6, 7].
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Static and dynamics properties of fluxons in interactions with inhomogeneity are also

of interest from physical point of view because such an inhomogeneity could be present in

experiments due to the non-uniformity in the width of the transmission Josephson junction

line (see, e.g. [2, 31]) or in the thickness of the oxide barrier between the superconductors

forming the junction (see, e.g. [33, 37]). When the parameter d is greater or less than

one, the inhomogeneity is called a micro-resonator, respectively, micro-resistor. In SIFS

junctions, the inhomogeneity d can even be made to be negative, i.e. d < 0 [32, 39, 40].

Recently such inhomogeneous systems and their non-uniform ground states, which can

be viewed as trapped/pinned fluxons, have been identified as offering promising future

device applications, such as novel circuits for information storage and processing in both

classical and quantum limits [12], a single flux quantum-based logic circuit [26, 28] and

artificial crystals for simulating and studying energy levels and band structures in large

systems of spins [35] (see also [16] and references therein for experimental studies and

observations of such trapped fluxons).

In this paper, we consider an infinitely long Josephson junction with inhomogeneity (1.3).

In particular, we focus on the case of d � 0. We provide a full analytical study of the

existence and stability of pinned fluxons, using dynamical systems techniques, Hamiltonian

systems ideas and Sturm–Liouville theory. Our method enables us to analyse and identify

all possible pinned fluxons, including the unstable ones, which may be stabilised by

introducing additional defects [21]. Hence our study reveals the rich family of pinned

fluxons in Josephson junctions with a finite length inhomogeneity, which may be observed

in experiments and exploited further for technological applications.

For the existence of the pinned fluxons, we observe that, as D ≡ 1 for |x| large, it

follows immediately that the asymptotic fixed points of (1.1) are given by sinφ = γ, and

the temporally stable stationary uniform solutions are φ = arcsin γ+ 2kπ. By definition, a

pinned fluxon is a stationary solution of (1.1), which connects arcsin γ and arcsin γ + 2π.

Hence a pinned fluxon is a solution of the boundary value problem

φxx − D(x;L, d) sinφ+ γ = 0;

lim
x→∞

φ(x) = arcsin γ + 2π and lim
x→−∞

φ(x) = arcsin γ.
(1.4)

First we observe that pinned fluxons can only exist for bounded values of the applied

bias current, |γ| � 1 (where this upper bound is directly related to our choice to set

D ≡ 1 outside the defect). Moreover there are symmetries in this system. If φ(x) is a

pinned fluxon connecting arcsin γ (at x → −∞) and arcsin γ + 2π (at x → +∞), then

φ(−x) is a solution as well, connecting arcsin γ + 2π (x → −∞) and arcsin γ (x → +∞).

So the second solution is a pinned anti-fluxon. The symmetry implies that we can focus

on pinned fluxons and all results for pinned anti-fluxons follow by using the symmetry

x → −x. Another important symmetry is

φ(x) → 2π − φ(−x) and γ → −γ.

Thus if φ(x) is a pinned fluxon with bias current γ, then 2π − φ(−x) is a pinned fluxon

with bias current −γ. This means that we can restrict to a bias current 0 � γ � 1 and the

case −1 � γ < 0 follows from the symmetry above.
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Figure 1. (Colour online) Phase portraits when γ = 0.15 and d = 0.2. The dash-dotted red curves

are the unstable manifolds of (arcsin γ, 0), the dashed magenta curves are the stable manifolds

of (2π + arcsin γ, 0) and the solid blue curves are examples of orbits for the dynamics inside the

inhomogeneity. The bold green curve is an example of a pinned fluxon.

Furthermore the differential equation in (1.4) is a (non-autonomous) Hamiltonian ODE

with Hamiltonian

H = 1
2
p2 − D(x;L, d)(1 − cosφ) + γφ, where p = φx. (1.5)

The non-autonomous term has the form of a step function, which implies that on each

individual interval (−∞,−L), (−L,L) and (L,∞) the Hamiltonian is fixed, though the value

of the Hamiltonian will vary from interval to interval. Therefore the solutions of (1.5) can

be found via a phase plane analysis, consisting of combinations of the phase portraits for

the system with D = 1 and D = d, see also [34] for a similar approach to get existence of

π-kinks. In the phase plane analysis, the length of the inhomogeneity (2L) is treated as a

parameter. For x < −L, the pinned fluxon follows one of the two unstable manifolds of

fixed point (arcsin γ, 0) of the reduced ODE (1.4). Similarly for x > L, the pinned fluxon

follows one of the stable manifolds of the fixed point (arcsin γ+2π, 0). Finally for |x| < L,

the pinned fluxon corresponds to a part of one of the orbits of the phase portrait for

the system with D = d. The freedom in the choice of the orbit in this system implies the

existence of pinned fluxons for various lengths of the inhomogeneity, see Figure 1 for an

example of the construction of a pinned fluxons when γ = 0.15 and d = 0.2. Orbits of a

Hamiltonian system can be characterised by the value of the Hamiltonian, hence there is

a relation between the value of the Hamiltonian inside the inhomogeneity and the length

of the inhomogeneity. The resulting pinned fluxon is in H2(�) ∩C1(�). As the ODE (1.4)

usually implies that the second derivative of the pinned fluxon will be discontinuous, this

is also the best possible function space for the pinned fluxon solutions.

After analysing the existence of the pinned fluxons and having found a plethora of

possible pinned fluxons when a bias current is applied to the Josephson junction (i.e.

γ� 0), we will consider their stability. First we will consider linear stability. To derive the

linearised operator about a pinned fluxon φpin(x;L, γ, d), write φ(x, t) = φpin(x;L, γ, d) +
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eλtv(x, t;L, γ, d) and linearise about v = 0 to get the eigenvalue problem

Lpinv = Λv, where Λ = λ2 + αλ, (1.6)

and the linearisation operator Lpin(x;L, γ, d) is

Lpin(x;L, γ, d) = Dxx − D cosφpin(x;L, γ, d) =

⎧⎨⎩Dxx − cosφpin(x;L, γ, d), |x| > L;

Dxx − d cosφpin(x;L, γ, d), |x| < L.

(1.7)

The natural domain for Lpin is H2(�). We call Λ an eigenvalue of Lpin if there is a

function v ∈ H2(�), which satisfies Lpin(x;L, γ, d) v = Λv. This operator is self-adjoint,

hence all eigenvalues will be real. Furthermore it is a Sturm–Liouville operator, thus the

Sobolev Embedding Theorem gives that the eigenfunctions are continuously differentiable

functions in H2(�). Sturm’s Theorem [36] can be applied, leading to the fact that the

eigenvalues are simple and bounded from above. Furthermore if v1 is an eigenfunction

of Lpin with eigenvalue Λ1 and v2 is an eigenfunction of Lpin with eigenvalue Λ2 with

Λ1 > Λ2, then there is at least one zero of v2 between any pair of zeros of v1 (including

the zeros at ±∞). Hence the eigenfunction v1 has a fixed sign (no zeros) if and only if

Λ1 is the largest eigenvalue of Lpin. The continuous spectrum of Lpin is determined by

the system at ±∞. A short calculation shows that the continuous spectrum is the interval

(−∞,−
√

1 − γ2).

If the largest eigenvalue Λ of Lpin is not positive or if Lpin does not have any

eigenvalues, then the pinned fluxon is linearly stable, otherwise it is linearly unstable.

This follows immediately from analysing the quadratic Λ = λ2 + αλ. If Λ � 0, then both

solutions λ have non-positive real part. However if Λ > 0 is then there is a solution λ

with positive real part. Furthermore the λ-values of the continuous spectrum also have

non-positive real part as the continuous spectrum of Lpin is on the negative real axis.

The linear stability can be used to show non-linear stability. The Josephson junc-

tion system without dissipation is Hamiltonian. Define P = φt, u = (φ, P ), then the

equation (1.1) can be written as a Hamiltonian dynamical system with dissipation on

an infinite dimensional vector space of x-dependent functions, which is equivalent to

H1(�) ∩ L1(�) × L2(�):

d

dt
u = J δH(u) − αDu, with J =

(
0 1

−1 0

)
, D =

(
0 0

0 1

)
,

and

H(u) =
1

2

∫ ∞

−∞

[
P 2 + φ2

x + 2D(x;L, d) (
√

1 − γ2 − cosφ)
]
dx

− γ

∫ ∞

0

[φ− arcsin γ − 2π] dx+ γ

∫ 0

−∞
[φ− arcsin γ] dx.

(1.8)

Here we have chosen the constants terms in the γ-integrals such that they are convergent

for the fluxons. Furthermore for any solution u(t) of (1.1), we have

d

dt
H(u) = −α

∫ ∞

−∞
P 2dx � 0. (1.9)
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As a pinned fluxon is a stationary solution, we have DH(φpin, 0) = 0 and the Hessian of

H about a fluxon is

D2H(φpin, 0) =

(
−Lpin 0

0 I

)
.

If Lpin has only strictly negative eigenvalues, then it follows immediately that (φpin, 0) is

a minimum of the Hamiltonian and (1.9) gives that all solutions nearby the pinned fluxon

will stay nearby the pinned fluxon, see also [10].

After this introduction, we will start the paper with an overview of simulations for the

interaction of travelling fluxons and the inhomogeneity in (1.1) for various values of d, L,

γ and α. This will motivate the analysis of the existence and stability of the pinned fluxons

in the following sections. We start the analysis of the existence and stability of pinned

fluxons by looking at a micro-resistor with d = 0. The advantage of the case d = 0 is

that several explicit expressions can be derived and technical difficulties can be kept to a

minimum, while it is also representative of the general case d < 1. It will be shown that for

γ = 0 there is exactly one pinned fluxon for each length of the inhomogeneity. For γ > 0,

a plethora of solutions starts emerging. There is a minimum and maximum length outside

that the inhomogeneity cannot sustain pinned fluxons. Between the minimal and the

maximal length, there are at least two pinned fluxons, often more. At each length between

the minimum and maximum, there is exactly one stable pinned fluxon. If the length

of the interval is (relatively) large, the stable pinned fluxons are non-monotonic. Note

that stable non-monotonic fluxons are not possible in homogeneous systems, since for a

homogeneous system the derivative of the fluxon is an eigenfunction for the eigenvalue

zero of the operator associated with the linearisation about the fluxon. If the fluxon is

non-monotonous, then this eigenfunction has zeros. As the linearisation operator is a

Sturm–Liouville operator, this implies that the operator must have a positive eigenvalue

as well, hence the non-monotonous fluxon is unstable. However for inhomogeneous

systems, the derivative of the fluxon is usually not differentiable, hence cannot give rise

to an eigenvalue zero (since the eigenfunctions have to be C1) and stable non-monotonic

fluxons are in principle possible. This shows that the inhomogeneity can give rise to

qualitatively different fluxons.

For the existence analysis of the pinned fluxons, the length of the inhomogeneity will

be treated as a parameter. The pinned fluxons satisfy an inhomogeneous Hamiltonian

ODE whose Hamiltonian is constant inside the inhomogeneity. It will be shown that the

existence and type of pinned fluxons can be parametrised by the value of this Hamiltonian.

The length of the inhomogeneity is determined by the value of the Hamiltonian and the

type of pinned fluxon, leading to curves relating the length 2L and the value of the

Hamiltonian inside the inhomogeneity. In [21], it is shown, in the general setting of an

inhomogeneous wave equation, that changes in stability of the pinned fluxons can be

associated with critical points of the length function relating L and the value of the

Hamiltonian. The results of this paper together with Sturm–Liouville theory give the

stability properties of the pinned fluxons in the general setting.

After giving full details for the case d = 0, for which the stability issue can be settled

independent of [21], an overview of the results for d > 0 is given. The general micro-

resistor case (0 < d < 1) is very similar to the case d = 0. The micro-resonator case (d > 1)

https://doi.org/10.1017/S0956792511000301 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792511000301


Pinned fluxons in a Josephson junction with a finite-length inhomogeneity 207

has some different features, but the same techniques as before can be used to analyse

the existence and stability. We finish the analysis of the micro-resonator case by looking

at the special case where micro-resonators approximate a localised inhomogeneity. We

explicitly look at micro-resonators with d = µ
2L

and L very small. For γ, α and µ small, the

asymptotic results from [25] are recovered. Even in the limit of localised inhomogeneities,

our work generalises [25], since our methods allows us to consider γ, α and µ larger as

well.

The paper concludes with some further observations, conclusions and ideas for future

research.

2 Simulations

To put the analysis of the existence and stability of the pinned fluxons in the next sections

in a wider context, we look first at simulations of the interaction of a travelling fluxon with

an inhomogeneity. Recall that in absence of dissipation and induced currents (α = 0 = γ),

the system (1.1) without an inhomogeneity (D ≡ 1) has a family of travelling fluxon

solutions (1.2) for each wave speed |v| < 1. On the other hand, if there is a small induced

current and dissipation, but no inhomogeneity, then there is a unique travelling fluxon [11]

with a selected speed v, |v| < 1. Specifically, if there is no induced current (γ = 0) but

dissipation is present (α > 0), then no travelling fluxons exist in the homogeneous system.

Every travelling fluxon slows down and becomes a stationary fluxon. And if both an

induced current and dissipation are present, then an initial condition consisting of a

travelling fluxon with a speed different from the speed of the unique travelling fluxon will

adapt its speed and shape and get attracted to the unique travelling fluxon.

In this section, we will look at the interaction of a travelling wave with the defect.

We start with a travelling wave for the defect-less system far away from the defect and

let it approach the defect. The following can be observed and will be illustrated in the

remainder of this section:

• micro-resistor (d = 0):

– In the absence of dissipation and induced currents (α = 0 = γ), but in the presence

of an micro-resistor inhomogeneity , the travelling waves get captured if the micro-

resistor is sufficiently long. However if the micro-resistor is too short, the travelling

waves passes through the homogeneity (with some delay) but its speed is reduced.

The critical length of the micro-resistor depends on the speed of the incoming fluxon:

faster fluxons have a longer critical length, see Figure 2.

– If an induced current and dissipation are present (and hence the travelling waves

outside the micro-resistor have a unique speed), a moderately long micro-resistor will

capture the travelling fluxon if the dissipation is sufficiently large. However a short

micro-resistor or a long micro-resistor cannot capture the travelling fluxon, however

large the dissipation is, see Figures 3 and 4. In the next section, it will be shown

that pinned fluxons do not exist for short and long micro-resistors and the observed

critical length in the simulations corresponds well with the critical length found in

the next section.

– The pinned fluxon observed in the simulations is monotonic for shortish lengths, but

becomes non-monotonic once the micro-resistor becomes longer, see Figures 3 and 4.
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Figure 2. (Colour online) Simulation of a travelling wave with speed v = 0.1 approaching an

inhomogeneity with d = 0 when there is no induced current (γ = 0) or dissipation (α = 0). The

inhomogeneity is positioned in the middle (around the zero position) and is indicated by the two

solid black lines. The length of the inhomogeneity on the left is 0.38 and the travelling fluxon is

captured by the inhomogeneity; note that the ‘bounce’ of the fluxon is a lot larger than the length

of the inhomogeneity. The length of the inhomogeneity on the right is 0.36 and the pinned fluxon

can just escape, but its speed is significantly reduced.

Figure 3. (Colour online) Simulation of a travelling fluxon approaching an inhomogeneity with

d = 0 when the induced current is γ = 0.1. On the left, the length is 0.38. Here the dissipation is

α = 0.9, but however large α is taken, the fluxon is never captured. In the middle and right plots,

the length is 0.44. In the middle, the dissipation is α = 0.48 and the fluxon is captured; on the right,

the dissipation is α = 0.47 and the fluxon can escape.

This ties in with the stability analysis in the next section, which shows that there

is a length interval for which there exists a unique stable pinned fluxons which is

non-monotonic for larger lengths.

• Micro-resonator (d = 2):

– In the absence of dissipation and induced currents (α = 0 = γ), but in the presence

of an micro-resonator inhomogeneity, no travelling fluxons are captured. In the next

section, it is shown that pinned fluxons exist for any length of the micro-resonator,

but none of them are stable, see Figure 5.

– If an induced current and dissipation are present (and hence the travelling waves

outside the micro-resistor have a unique speed), a sufficiently long micro-resistor

will capture the travelling fluxon if the dissipation is sufficiently large, while a short

micro-resonator cannot capture the travelling fluxon, however large the dissipation
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Figure 4. (Colour online) Simulation of a travelling fluxon approaching a longish inhomogeneity

with d = 0 when the induced current is γ = 0.1 and dissipation is α = 0.5. On the left, the length is

12.5, the travelling wave is captured and a non-monotonic pinned fluxon is formed. On the right, the

length is 35 and the travelling wave escapes after a while, leaving in its wake a ‘bump’ connecting

2π + arcsin γ at both ends. Note that the vertical scale and colouring is different in both figures; as

a reference point, the travelling wave on the right is the same in both cases.

Figure 5. (Colour online) Simulation of a travelling wave approaching an inhomogeneity with

d = 2 and length 0.1, when there is no induced current and no dissipation (γ = 0 = α). The speed

on the left is v = 0.21 and the travelling wave is bounced by the inhomogeneity. The speed on the

right is v = 0.22 and at first the pinned fluxon seems to be captured by the inhomogeneity, but after

while it travels through the inhomogeneity and seems to resume its original speed.

is, see Figure 6. Again, this ties in with the analysis in the later sections. If there is

an induced current, more branches of pinned fluxons exist including a stable branch.

For γ → 0, the fluxons on the stable branch converge to fluxons in resonators with

length 0.

– The pinned fluxon observed in the simulations is monotonic for shortish lengths, but

becomes non-monotonic once the micro-resistor becomes longer, see Figures 6 and 7.

This ties in with the stability analysis in the next section, which shows that there

is a length interval for which there exists a unique stable pinned fluxons which is

non-monotonic for larger lengths.
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Figure 6. (Colour online) Simulation of a travelling wave approaching an inhomogeneity with d = 2

when there is an induced current (γ = 0.1). On the left and middle, there is a micro-resonator with

length 0.42. On the left, the dissipation is α = 0.3 and the fluxon is captured, whilst in the middle

the dissipation is α = 0.29 and the fluxon escapes. On the right, the length is 0.4 and the dissipation

is α = 0.9 and the fluxon still escapes as the length is too short for a pinned fluxon to exist.

Figure 7. (Colour online) Simulation of a travelling wave approaching an inhomogeneity with d = 4

and length 1.5, when the induced current is γ = 0.2 and the dissipation is α = 0.2. The resulting wave

is non-monotonic as can be seen on the right. Due to the weaker dissipation, it takes some time for

the wave to converge to its stable shape. Initially, the travelling wave approaches the monotonic

unstable pinned fluxon, then deflects from it and converges to the non-monotonic stable one.

First we look at the case α = 0 = γ (no induced current, no dissipation) and the

inhomogeneity of micro-resistor type with d = 0. If the length is too short, the fluxon will

not be captured, but its speed will be reduced by the passage through the inhomogeneity.

If the length of the inhomogeneity is sufficiently large, the travelling fluxon will be

captured. Some radiation is released in this process and the fluxon ‘bounces’ backwards

and forwards around the defect, especially if the length is ‘just long enough’. This is

consistent with the results in [30] where a detailed analysis of the interaction of a fluxon

with an inhomogeneity is studied in the case that no induced current and dissipation

are present. An illustration is given in Figure 2, here the initial condition is a travelling

sine-Gordon fluxon with speed v = 0.1. The defect is indicated by the two solid black

lines. Note that the length of the defect that captures the fluxon is a lot smaller than

the initial amplitude of the ‘bounce’ of the fluxon. Observations suggest that the minimal

length for the inhomogeneity to capture the travelling fluxon increases if the wave speed

increases.
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Next we look at the system with a micro-resistor with d = 0, now with an induced

current γ = 0.1 and varying lengths and values of α. We start again with an inhomogeneity

of length 0.38 (L = 0.19). When γ = 0, this micro-resistor captures a fluxon with speed

v = 0.1. With an induced current, it cannot capture a fluxon, however large we make α, i.e.

however slow the fluxon becomes. This is illustrated in Figure 3. The micro-resistor slows

the fluxon down for a while, but eventually the fluxon escapes with the same speed as it

had earlier (as this speed is unique in a system with α, γ � 0). The simulations suggest

that the smallest length, which can capture a fluxon is 0.44 (L = 0.22). In the next section,

it will be shown that for α, γ� 0, there is a minimal length below which no pinned fluxon

can exist. This explains why the inhomogeneity with the shortest length cannot capture

even a very slow travelling fluxon. In Figure 3, it is illustrated that, if the length can

sustain pinned fluxons, the capture depends on the dissipation (hence on the speed of the

incoming fluxon). If the dissipation is sufficiently large, hence the speed sufficiently slow,

the pinned fluxon will be captured.

A longish defect in a micro-resistor will also capture the travelling wave and the

resulting pinned fluxon is not monotonic, see Figure 4. The length of the inhomogeneity

is substantial, so the stationary shape connecting the far field rest states at arcsin γ is a

‘bump’. This ‘bump’ is present at all the rest states arcsin γ+2kπ for γ� 0 as arcsin γ+2kπ

is not an equilibrium for the dynamics with d� 1. From a phase plane analysis, it can

be seen that the amplitude of the homoclinic connection to arcsin γ + 2kπ grows with the

length L of the defect. As shown in Figure 4, for L = 6.25, the travelling fluxon travels

into this ‘bump’ and gets captured. The resulting pinned fluxon is not monotonic. In the

next section, the family of all possible pinned fluxons is analysed and it is shown that for

long lengths the stable pinned fluxon is non-monotonic. Moreover, it follows that there is

an upper limit on the length of inhomogeneities that can sustain pinned fluxons. This is

illustrated on the right in Figure 4. The travelling fluxon seems to be captured initially

by the inhomogeneity, but after a while it escapes again. However large the dissipation is

taken, this will always happen, illustrating that no pinned fluxons can exist.

Next we consider a micro-resonator with d = 2. As before, we consider the case without

an induced current (γ = 0) first. In this case, the fluxon is never captured. For the smaller

speeds the fluxon reflects, for larger speeds the fluxon seems to get trapped, but it escapes

after a while. This is illustrated in Figure 5 for a micro-resonator with length 0.1. The

fluxon gets reflected if the speed is v = 0.21 and gets through if v = 0.22. In the next

section, it will be shown that a system with a micro-resonator and no induced current

sustains a unique pinned fluxon for each length of the defect and that this pinned fluxon is

unstable. This explains why no travelling fluxons get trapped when d > 1. This contrasts

the behaviour for d < 1, where there are stable pinned fluxons and the travelling fluxons

get trapped if they travel with slow speed.

After the induction-less system, we consider a system with a micro-resonator with d = 2

and an induced current γ = 0.1. As with the micro-resistor, there is a minimum length,

under which the micro-resonator cannot capture a fluxon. The simulations suggest that

the minimum length is 0.42 (L = 0.21). In Figure 6, it is illustrated that a micro-resonator

with length 0.40 cannot capture a fluxon with α = 0.9, whilst a micro-resonator with

length 0.42 can capture a fluxon with α = 0.3, but it cannot for α = 0.29. This is consistent

with the results in the next sections where it is shown that for α, γ � 0 there exists a
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Figure 8. (Colour online) Phase portraits of the ODE (1.4) for γ = 0 and d = 0. The dash-dotted

red curve represents the coinciding stable and unstable manifolds of the asymptotic fixed points.

The solid blue curves are orbits for the system inside the inhomogeneity. In the sketch on the right,

the bold green curve represents a pinned fluxon.

minimal length under which no pinned fluxons can be sustained by the inhomogeneity. If

the length can just sustain pinned fluxons, then there are both a stable and an unstable

pinned fluxon close to each other. In the left panels of Figures 6 and 7, it can be observed

that initially the travelling fluxon approaches the unstable pinned fluxon, but then reflects

to the stable one and settles down.

Finally we consider a micro-resonator with a longer length for which the travelling

fluxon gets captured and becomes a non-monotonic pinned fluxon. In Figure 7, it is

illustrated that, for a micro-resonator with d = 4 and length 1.5 (L = 0.75), the travelling

fluxon at γ = 0.2 and α = 0.2 gets attracted to a non-monotonic pinned fluxon. Note that

for micro-resonators (i.e. d > 1), the stable non-monotonic pinned fluxons have a ‘dip’ as

opposed to the ones for the micro-resistors, which have a ‘bump’.

3 No resistance (d=0)

We now analyse the existence and stability of the pinned fluxons in a micro-resistor

and a micro-resonator. First we consider the case when there is no resistance in the

inhomogeneity, hence a micro-resistor with d = 0. This case provides a good illustration

of the richness of the family of pinned fluxons, shows the essence of the analytic techniques

for the existence and stability analysis and has less technical complications than the more

general values of d. The existence analysis for the case with no bias current (γ = 0) is

quite different from the case when a bias current is applied (γ > 0). So we will consider

them separately.

3.1 Existence of pinned fluxons without applied bias current

For γ = 0, the pinned fluxon has to connect the stationary states at φ = 0 and φ = 2π.

In the background dynamics of the ODE (1.4) with D ≡ 1, the unstable manifold of

(0, 0) coincides with the stable manifold of (2π, 0), as follows immediately by analysing

the Hamiltonian (1.5) with D ≡ 1. These coinciding manifolds are denoted by a dash-

dotted red curve in the phase portrait sketched in Figure 8. This curve and hence the
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Figure 9. (Colour online) Plot of the length L as a function of h, the value of the Hamiltonian in

the inhomogeneity, for γ = 0 and d = 0.

stable/unstable manifolds represent the unperturbed sine-Gordon fluxon (1.2). The orbits

generated by the Hamiltonian system with D ≡ 0 are straight lines. In Figure 8, samples

of these orbits are given by the solid blue lines. Any solid blue line that crosses the dash-

dotted red stable/unstable manifold can be used to form a pinned fluxon. An example

is given in the panel on the right in Figure 8, where the bold green curve represents a

pinned fluxon in H2(�) ∩ C1(�).

As can be seen from Figure 8, the value of the Hamiltonian inside the inhomogeneity

is a convenient parameter to characterise the pinned fluxons. The points of intersection

of the solid blue orbits and dash-dotted red stable/unstable manifolds are denoted by

(φin, pin), respectively, (φout, pout) for the first, respectively, second intersection. It follows

immediately that pin = pout and φout = 2π − φin. Furthermore the expression for the

Hamiltonian, (1.5), gives the following relations for φin and pin: 0 = 1
2
p2

in − (1 − cosφin)

(D ≡ 1) and h = 1
2
p2

in (D ≡ 0), with 0 < h � 2 where h is the value of the Hamiltonian

inside the inhomogeneity. Thus

pin(h) =
√

2h and φin(h) = arccos(1 − h), with 0 < h � 2. (3.1)

Inside the inhomogeneity (|x| < L), the pinned fluxon related to the value h satisfies

h = 1
2
φ2
x, thus φx =

√
2h. Hence the half length L and the parameter h are related by

L =

∫ 0

−L
dx =

∫ π

φin(h)

dφ

φx
=

∫ π

φin(h)

dφ√
2h

=
π − arccos(1 − h)√

2h
. (3.2)

As the numerator is a monotonic decreasing function of h and the denominator is

monotonic increasing, it follows immediately that L is a monotonic decreasing function of

h. The function L takes values in [0,∞) as limh→0 L(h) = ∞ and limh→2 L(h) = 0. The h-L

plot is given in Figure 9. We summarise the existence results for pinned fluxons without

a bias current in the following lemma.
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Figure 10. (Colour online) Phase portrait at γ = 0.15 and d = 0. On the right, there is a zoom

into the area around (φ,φx) = (2π, 0).

Lemma 1 Let γ = 0 and d = 0. There exists a unique pinned fluxon for any length 2L of

the inhomogeneity. The Hamiltonian inside the inhomogeneity of this pinned fluxon has the

value h(L), implicitly given by (3.2). Define x∗ to be the shift such that φ0(−L+ x∗) = φin

(see (1.2) for the definition of φ0), then the pinned fluxon is given explicitly by

φpin(x;L, 0, 0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ0(x+ x∗), x < −L,

π +
π − arccos(1 − h)

L
x, |x| < L,

φ0(x− x∗), x > L.

(3.3)

3.2 Existence of pinned fluxons with bias current

For γ > 0, the pinned fluxon has to connect the stationary states at φ = arcsin γ and

φ = 2π + arcsin γ. In the background dynamics with D ≡ 1, the unstable manifold of

φ = arcsin γ no longer coincides with the stable manifold of 2π + arcsin γ. Further-

more the orbits of the dynamics inside the inhomogeneity are parabolic curves instead

of straight lines. These two changes add substantial richness to the family of pinned

fluxons.

Let us first consider the phase portraits. In Figure 10, we consider γ = 0.15 as a typical

example to illustrate the ideas. In the dynamics with D ≡ 1, the unstable manifolds to

arcsin γ are denoted by dash-dotted red curves, while the stable manifolds to 2π +arcsin γ

are denoted by dashed magenta curves. The larger γ gets, the wider the gap between

the unstable and stable manifold becomes. The dynamics within the inhomogeneity with

D ≡ 0 is denoted by solid blue orbits. These solid blue orbits are nested and can be

parametrised with a parameter h, using the Hamiltonian (1.5) with D ≡ 0:

1
2
(φx)

2 + γφ = H0(γ) + h,

where H0(γ) is given by the value of the Hamiltonian (1.5) on the dashed magenta stable
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Figure 11. (Colour online) Phase portrait at γ = 0.15 and d = 0 with the furthest left solid blue

orbit for which pinned fluxons exist. There are two pinned fluxons possible, represented by the bold

green line. On the right is a zoom into the area around (φ,φx) = (2π, 0).

manifold (D ≡ 1):

H0(γ) = γ arcsin γ − (1 −
√

1 − γ2) + 2πγ. (3.4)

In the phase portrait, we observe that the larger the value of h is, the further to the right

the extremum of the solid blue orbits is.

For the existence of pinned fluxons, a solid blue orbit has to connect the dash-dotted

red unstable manifold with the dashed magenta stable manifold. In Figure 10, the furthest

left possible solid blue orbit for which pinned fluxons may exist is the one indicated

with h = 0. In the zoom on the right, it can be seen that this orbit just touches the

dashed magenta stable manifold. This solid blue orbit intersects the dash-dotted red

unstable manifold twice, both points give rise to a pinned fluxon, as sketched in Figure 11.

Obviously the pinned fluxon in the second plot in Figure 11 will occur in a defect with a

shorter length than the one in the first plot. The furthest right possible orbit that gives

rise to pinned fluxons is marked with hmax in Figure 10. This solid blue orbit touches the

dash-dotted red unstable manifold and crosses the dashed magenta stable manifolds in

six points. The leftmost (first) intersection does not give rise to a pinned fluxon as the

dashed magenta stable manifold is intersected before the dash-dotted red unstable one is.

All other intersections represent different pinned fluxons, hence five pinned fluxons can be

associated with this orbit. Moreover for h just below hmax, the solid blue orbit intersects

the dash-dotted red unstable manifold twice (while it still intersects the dashed magenta

stable manifold five times: there are 10 different pinned fluxons associate to such value

of h.

In general, the pinned fluxons are determined by two points in the phase plane: the

point where pinned fluxon enters the inhomogeneity (i.e. the crossing from the dash-dotted

red unstable manifold to the solid blue orbit), this point will be denoted by (φin, pin) and

the point where the pinned fluxon leaves the inhomogeneity (i.e. the crossing from the

solid blue orbit to the dashed magenta stable manifold), this point will be denoted

by (φout, pout). Thus the points (φin, pin) and (φout, pout) are determined by the set of
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equations

H0(γ) − 2πγ = 1
2
p2

in − (1 − cosφin) + γφin,

H0(γ) + h= 1
2
p2

in + γφin,

H0(γ) + h= 1
2
p2

out + γφout,

H0(γ) = 1
2
p2

out − (1 − cosφout) + γφout.

(3.5)

Combining the equations in (3.5), we get expressions for φin and φout:

cosφin = 1 − (h+ 2πγ) and cosφout = 1 − h. (3.6)

This is well defined only if 0 � h � 2(1 − πγ). Hence there are maximal values for γ and

h, given by

γmax =
1

π
and hmax = 2(1 − πγ).

If γ > γmax, then there is no solid blue orbit that intersects both the dash-dotted red

unstable manifold and the dashed magenta stable manifold, hence no pinned fluxons exist

if the applied bias current is larger than γmax. If h > hmax, then the solid blue orbits do

not intersect the red manifold anymore.

Furthermore φin must lie on the dash-dotted red unstable manifold, hence arcsin γ �
φin � φmax(γ), where φmax(γ) is the maximal φ-value of the orbit homoclinic to arcsin γ.

As h ∈ [0, 2(1 − πγ)], this implies that there are two possible values for φin and that

pin > 0:

φin = π ± arccos(2πγ − (1 − h)) and pin =
√

2 (H0(γ) + h− γφin).

Note that the unstable manifold left of arcsin γ only intersects with blue orbits that

have φx < 0, hence those orbits can never connect to one of the stable manifolds of

2π + arcsin γ.

The point (φout, pout) has to lie on the dashed magenta stable manifolds, so there can

be up to five possible branches of solutions:

(1) φout = 2π − arccos(1 − h) with pout > 0, for all 0 � h � hmax;

(2) φout = 2π+arccos(1−h) with pout � 0, for 0 � h � h2 and pout < 0, for h2 < h � hmax;

(3) φout = 2π + arccos(1 − h) with pout � 0, for h2 < h � hmax;

(4) φout = 4π − arccos(1 − h) with pout � 0, for h1 < h � hmax;

(5) φout = 4π − arccos(1 − h) with pout < 0, for h1 < h � hmax.

Here h2 is the h-value such that the blue orbit intersects the magenta manifolds at

the equilibrium (2π + arcsin γ, 0), i.e. h2(γ) = 1 −
√

1 − γ2, and h1 is such that the

blue orbit touches the magenta manifold at (2π + φmax(γ), 0), the rightmost point, thus

h1(γ) = 1 − cos(φmax(γ)). In all cases, |pout| =
√

2 (H0(γ) + h− γφout).

To satisfy h2(γ) � hmax(γ), we need that γ � γ2 = 4π
4π2+1

≈ 0.3104. If γ > γ2, then only

pinned fluxons with φout = 2π±arcsin γ and pout > 0 exist. In order to have h1(γ) � hmax(γ),

we need that γ � γ1, where γ1 is the implicit solution of cosφmax(γ1) + 1 = 2πγ1, i.e.

γ1 ≈ 0.1811. If γ > γ1, then no pinned fluxons with φout = 4π − arcsin γ exist. On the
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Figure 12. (Colour online) The extremal h-values h1(γ), h2(γ) and hmax(γ).
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Figure 13. (Colour online) The five pinned fluxons with φin = π−arccos(2πγ− (1−h)) for γ = 0.15,

d = 0 and h = (h1 + hmax)/2. Note that only the pinned fluxon in the first panel is monotonic. In

the L-h of Figure 14, the pinned fluxons in the first two panels are on the solid blue curve, the third

one is on the dash-dotted red curve and the last two are on the dashed green curve.

intervals of common existence, we have 0 � h2(γ) � h1(γ) � hmax(γ), h1(γ1) = hmax(γ1),

h2(γ2) = hmax(γ2), see Figure 12.

In Figure 13, we have taken γ = 0.15 and h = (h1 + hmax)/2 and have plotted all five

possible pinned fluxons (i.e. all possibilities for (φout, pout)) with φin = π − arccos(2πγ −
(1 − h)). Obviously five more pinned fluxons with the same (φout, pout) are possible with

φin = π + arccos(2πγ − (1 − h)).

To determine the length of the inhomogeneity for the pinned fluxons, we use that on

the orbits in the inhomogeneity (solid blue curves in the phase portrait) φ and φx are

related by |φx| =
√

2 (H0(γ) + h− γφ). Integrating this ODE, taking into account the sign
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Figure 14. (Colour online) The lengths of the pinned fluxons for γ = 0.15 and d = 0. The lengths of

the pinned fluxons with φout = 4π − arccos(1 − h) are plotted as the dashed green curve (branches 4

and 5), the lengths of pinned fluxons with φout = 2π+arccos(1−h) and pout > 0 are the dash-dotted

red curve (branch 3). The lengths of the remaining pinned fluxons (branches 1 and 2) are indicated

by the solid blue curves. The panels on the right zoom into the top and bottom and show that the

minimal and maximal length are not obtained for hmax, but a smaller value.

of pout, we get that the length of the pinned fluxons with pout > 0 is given by

2L =

√
2

γ

[√
H0 + h− γφin −

√
H0 + h− γφout

]
=
pin − pout

γ
(3.7)

and for pout < 0, we have

2L =

√
2

γ

[√
H0 + h− γφin +

√
H0 + h− γφout

]
=
pin − pout

γ
. (3.8)

These lengths are plotted in Figure 14 for γ = 0.15. The solid blue curve is formed by

the branches 1 and 2, the dash-dotted red curve is branch 3 and the dashed green curve

is formed by the branches 4 and 5. This plot shows that there is a positive minimal

and maximal length for the inhomogeneity to sustain pinned fluxons. Inhomogeneities

with shorter or longer lengths will not be able to sustain pinned fluxons. Figure 14
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illustrates also that the maxima and minima of the possible length of the inhomogeneity

are attained inside the interval (0, hmax), not at the endpoints. These extremal points will

play an important role in the stability analysis as we will see in the next section.

Remark 2 At φout = 2π + arcsin γ, i.e h = h2, there is a homoclinic gluing bifurcation. To

see this, we look at the disappearing solution in the limit h ↓ h2. For h ↓ h2, there is one

solution with φout ≈ 2π + arcsin γ and pout < 0 and one solution with φout ≈ 2π + arcsin γ

and pout > 0. The solution with pout < 0 remains very close to 2π + arcsin γ for x > L.

However the solution with pout > 0 is tracking almost all of the homoclinic connection

to 2π + arcsin γ. And in the limit h ↓ h2, this solution ‘splits’ into the pinned fluxon with

pout = 0 and a full homoclinic connection (fluxon–anti-fluxon pair).

In general, the derivation of the existence of the pinned fluxons shows that for fixed γ > 0

and d = 0, there will always be a strictly positive minimal and maximal length for the

existence of pinned fluxons. From Figure 12, it follows that the dashed green curve of

pinned fluxons with φout = 4π − arccos(1 − h) is not present if γ > γ1. Similarly if γ > γ2,

the dash-dotted red curve of pinned fluxons with φout = 2π +arccos(1 − h) and pout > 0 is

not present. Below we summarise the results for the existence of the pinned fluxons with

an induced current.

Theorem 3 For d = 0 and every 0 < γ � 1
π
, there are Lmin(γ) and Lmax(γ), such that for

every L ∈ (Lmin, Lmax), there are at least two pinned fluxons (at least one for L = Lmin or

L = Lmax). Furthermore

lim
γ↓0

Lmin(γ) = 0, lim
γ↓0

Lmax(γ) = ∞,

and

lim
γ↑1/π

Lmin(γ) = lim
γ↑1/π

Lmax(γ)

=

√
π

2

(
arcsin

1

π
+

√
π2 − 1

)
−

√
π

2

(
arcsin

1

π
+

√
π2 − 1 − π

)
≈ 1.8.

For given L ∈ [Lmin, Lmax], the maximum possible number of simultaneously existing pinned

fluxons is six. For γ > 1
π
, there exist no pinned fluxons.

To relate the rich family of pinned fluxons that exists for γ > 0 with the unique pinned

fluxons for γ = 0, we have sketched the L–h curves for γ = 0.001 in Figure 15. The

bold blue curve is very close to the curve in Figure 9 and if γ goes to 0, it converges

to this curve. The pinned fluxons on the bold blue curve have φin = π − arccos(2πγ −
(1 − h)) = arccos(1 − h − 2πγ) and φout = 2π − arccos(1 − h) and for γ → 0, these

fluxons converge to the ones observed for γ = 0. There are some other convergent L–h

curves as well. The length of the solid blue curve associated with the pinned fluxons with

φin = π + arccos(2πγ − (1 − h)) = 2π − arccos(1 − h− 2πγ) and φout = 2π − arccos(1 − h)

goes to zero as expected. It can be shown that dash-dotted red and dashed green curves
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Figure 15. (Colour online) L–h curves of the pinned fluxons for γ = 0.001.

can be associated to lengths of 4π-fluxons. A 4π-fluxon is a connection between 0 and

4π. Such fluxon do not exist without an inhomogeneity, but with an inhomogeneity

such connections are possible and some 4π-fluxons are stable. There are four possible

4π-fluxons if γ = 0 and the fluxons on the dashed green and dashed-dotted red curves

converge to those 4π-fluxons. For more details, see [20].

3.3 Stability of the pinned fluxons with d = 0

As seen in the introduction, the stability of the pinned fluxons is determined by the eigen-

values of the linearisation operator Lpin as defined in (1.7). For d = 0, the linearisation

operator takes the form

Lpin(x;L, γ, 0) =

⎧⎨⎩Dxx − cosφpin(x;L, γ, 0), |x| > L;

Dxx, |x| < L,

where φpin is one of the pinned fluxons found in the previous section.

When there is no induced current (γ = 0), expressions for the eigenvalues of Lpin can

be found explicitly. Recall that for d = 0 and γ = 0, there is a unique pinned fluxon for

each length L � 0, see Lemma 1.

Lemma 4 For γ = 0 and d = 0, the linear operator Lpin associated to the unique pinned

fluxon in the defect with length L has a largest eigenvalue Λmax ∈ (−1, 0) given implicitly

by the largest solution of

−µ
[
µ+ 1

2

√
2(1 + cosφin)

]
+ 1

2
(1 − cosφin)

= −
√

1 − µ2
[
µ+ 1

2

√
2(1 + cosφin)

]
tan

(√
1 − µ2

π − φin√
2(1 − cosφin)

)
,

(3.9)

where µ =
√

1 + Λmax ∈ (0, 1) and the relation between φin and L is given in (3.1) and (3.2).
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Figure 16. (Colour online) The largest eigenvalue of the linearised operator Lpin at d = 0 and

γ = 0 as function of the half length L of the inhomogeneity.

In Figure 16, Λmax is sketched as function of the half length L of the pinned fluxon. The

proof of Lemma 4 is quite technical; it is given in the Appendix.

Remark 5 For L large (hence φin small), (3.9) has more solutions. Hence for those pinned

fluxons, Lpin has some smaller eigenvalues in (−1, 0) too.

Corollary 6 If there is no induced bias current (γ = 0) and the micro-resistor has d = 0,

then the unique pinned fluxon in the defect with length L is linearly and non-linearly stable

under perturbations in H2(�) ∩ L1(�). The pinned fluxon is asymptotically stable if α > 0.

Next we consider the case that there is an induced bias current (γ > 0). In the previous

section, we have seen that in this case the pinned fluxons come in families, characterised

by the solid blue, dash-dotted red and dashed green curves in Figure 14. Locally along

those curves, we can write either L as a function of h, or, h as a function of L. Along

those curves, we will look for changes of stability, i.e. find whether the operator Lpin has

an eigenvalue zero (recall that eigenvalues of Lpin must be real). We will show that Lpin

has an eigenvalue zero if and only if along the h-L curve we have dL
dh

= 0 or the pinned

fluxon is isolated. Isolated pinned fluxons occur when γ is maximal, i.e. γ = 1
π

or when

γ = γ1, the maximal γ-value for which pinned fluxons with φout = 4π − arccos(2πγ − 1)

exist. This lemma is a special case of a more general theorem presented in [21]. The proof

simplifies considerably in this case.

Lemma 7 For any γ � 0, the linear operator Lpin(x;L, γ, 0) has an eigenvalue zero if and

only if

• dL
dh

= 0;

• or γ = 1
π

(this eigenvalue zero is the largest eigenvalue);

• or γ = γ1 ≈ 0.18, the solution of cosφmax(γ1) + 1 = 2πγ1 (see section 3.2), and φpin is
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such that φin = π, φout = 4π − arccos(2πγ1 − 1) = 2π + φmax(γ1) (this eigenvalue zero is

not the largest eigenvalue).

Proof First we observe that differentiating (1.4) with respect to x shows that φ′
pin satisfies

(Dxx−D(x) cosφpin(x))φ
′
pin(x) = 0, for x� ±L. However it follows immediately from (1.4)

that φ′
pin is not continuously differentiable, except when there exist k± ∈ � such that

φin = k−π and φout = k+π. From the existence results, it follows that this happens only

if γ = 1
π

and in this case φ′
pin is twice differentiable, so Lpinφ

′
pin = 0 and φ′

pin is an

eigenfunction with the eigenvalue zero. Note that for γ = 1
π
, there is only one pinned

fluxon and the solid blue curve in Figure 14 has become a single point (there are no red

or green curves).

In all other cases, φ′
pin � C1(�) ⊃ H2(�) so φ′

pin is not an eigenfunction with the

eigenvalue zero. However φ′
pin still plays a role in the eigenfunction related to any

eigenvalue zero. Indeed, on both intervals (∞,−L) and (L,∞), the second-order linear

ODE Lpinψ = 0 has two linearly independent solutions. As the asymptotic system

is hyperbolic, one solution is exponentially decaying whilst the other is exponentially

growing. Thus if the linear operator L has an eigenvalue zero, then the eigenfunction in

the intervals (−∞, L) and (L,∞) must be a multiple of the exponentially decaying solution.

As φ′
pin is exponentially decaying for |x| → ∞ and satisfies Lφ′

pin = 0 for |x| > L, it

follows that for any eigenvalue zero, the eigenfunction must be a multiple of φ′
pin for

|x| > L, unless φ′
pin ≡ 0. The case φ′

pin ≡ 0 happens only when φout = 2π + arcsin γ and

x > L. In this case, the appropriate eigenfunction is a multiple of e− 4
√

1−γ2(x−L).

Next we look inside the inhomogeneity, i.e. |x| < L. The linearised problem inside the

defect for an eigenvalue zero can be solved explicitly and gives an eigenfunction of the

form A+ B(x+ L), with A and B free parameters and |x| < L.

To conclude, if the linear operator Lpin has an eigenvalue zero, and φout � 2π+arcsin γ

(we will consider the case φout = 2π +arcsin γ later), then the eigenfunction is of the form

ψ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ′

pin(x), x < −L,

A+ B (x+ L), |x| < L,

K φ′
pin(x), x > L,

(3.10)

where A, B and K are free parameters. We have to choose the free parameters such that

ψ is continuously differentiable at ±L. As there are only three free parameters and four

matching conditions, this will give us a selection criterion on the length L for which an

eigenvalue zero exists. The matching conditions are

A = φ′
pin(−L−), B = φ′′

pin(−L−), B = Kφ′′
pin(L

+), and A+ 2BL = Kφ′
pin(L

+),

(3.11)

where the notation φ′
pin(−L−) = limx↑−L φ

′
pin(x), φ

′
pin(L

+) = limx↓L φ
′
pin(x), etc. Using that

pin/out = φ′
pin(∓L) and γ + φ′′

pin(±L±) = sinφ(±L) = sinφin/out, this can be written as

A = pin, B = sinφin − γ, B = K(sinφout − γ) and A+ 2BL = Kpout.
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Equations (3.7) and (3.8) show that L = pin−pout

2γ
, hence the parameters are given by

A = pin, B = sinφin − γ and K(sinφout − γ) = sinφin − γ

and the compatibility condition on L, or equivalently h, is

0 = pin sinφin(sinφout − γ) − pout sinφout(sinφin − γ). (3.12)

To derive this expression, we have multiplied the remaining equation [A+ 2BL = Kpout]

with γ(sinφout − γ). This term would be zero if sinφout = γ, hence φout = 2π + arcsin γ

but this case is not considered now.

For completeness, we also consider the case where we assume that the eigenfunction

vanishes for x < −L. If this is the case, then matching at x = −L gives immediately

that A = 0 = B. Thus this leads to a non-trivial eigenfunction only if φ′
pin(L) = 0 =

limx↓L φ
′′
pin(x). In other words, when φpin is a fixed point for x > L. This happens only if

φout = 2π + arcsin γ. This case we will be considered later.

Next we link the expression (3.12) to the derivative of L with respect to h. As L = pin−pout

2γ
,

the derivatives of pin and pout are needed. Differentiating (3.5) and (3.6), we get

pin
dpin

dh
= 1 − γφ′

in(h), sinφin
dφin

dh
= 1 and

pout
dpout

dh
= 1 − γφ′

out(h), sinφout
dφout

dh
= 1.

Thus differentiating L = pin−pout

2γ
gives that

pin sinφin pout sinφout
dL

dh
=

1

2γ
[pout sinφout(sinφin − γ) − pin sinφin(sinφout − γ)] . (3.13)

So we have shown that if φout � 2π+arcsin γ and the operator Lpin has an eigenvalue zero,

then either dL
dh

(h, γ) = 0 or pin sinφin pout sinφout = 0. Considering pin sinφin pout sinφout =

0 in more detail, we get the following:

• sinφout = 0 would mean that φout = 2π. Going back to the compatibility condi-

tion (3.12), this implies that γpin sinφin = 0, which only happens if also sinφin = 0 or

pin = 0. In the existence section, we have seen pin > 0, hence γpin sinφin = 0 can only

happen if φin = π, hence if γ = 1
π
;

• sinφin = 0 implies that φin = π. Going back to the compatibility condition (3.12), this

implies that γpout sinφout = 0, which only happens if also sinφout = 0 or pout = 0. Hence

either γ = 1
π

or γ = γ1, as the case φout = 2π + arcsin γ is excluded at this moment;

• pin � 0 as we have seen before;

• pout = 0 happens if φout = 2π + arcsin γ or φout = 2π + φmax(γ). Going back to

the compatibility condition (3.12), this implies that pin sinφin(sinφout − γ) = 0. Since

π − arcsin γ < φmax(γ) < 2π, this implies this only happens if sinφin = 0, which case is

considered before.

So altogether we have if φout � 2π + arcsin γ and the operator Lpin has an eigenvalue

zero, then either
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• dL
dh

(h, γ) = 0 or

• φin = π and φout = 2π, which only happens when γ = 1
π
. The eigenfunction in this case is

φ′
pin, which does not have any zeros, hence the eigenvalue zero is the largest eigenvalue.

• φin = π and φout = 2π+φmax(γ) (i.e. pout = 0), which only happens if γ = γ1. In this case,

the eigenfunction is φ′
pin for x < L and γ1

γ1−sinφmax(γ1)
φ′

pin for x > L. This eigenfunction

has a zero at x = L, hence the eigenvalue zero is not the largest eigenvalue. Note that

when γ = γ1 the green L(h) curve in Figure 14 has degenerated to an isolated point

related to the pinned fluxon φpin considered in this case.

To show that the converse is true, we look at the three cases dL
dh

(h, γ) = 0, γ = 1
π

and γ = γ1 and (φout, pout) = (2π + φmax, 0). It is straightforward to verify that the

eigenfunctions as described earlier can be constructed in those cases.

Finally we look at the case φout = 2π + arcsin γ. In this case, γ � 4π
1+4π2 and h = h2 =

1 −
√

1 − γ2. Furthermore the pinned fluxons satisfies φ′
pin ≡ 0 for x > L. In this case, the

general form of an eigenfunction for an eigenvalue zero is

ψ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ′

pin(x), x < −L,

A+ B (x+ L), |x| < L,

K e− 4
√

1−γ2(x−L), x > L,

where A, B and K are free parameters. We have to choose the free parameters such that

ψ is continuously differentiable at = ±L, i.e.

A = φ′
pin(−L−), B = φ′′

pin(−L−), K = A+ 2BL and B = −K 4
√

1 − γ2.

As L = pin−pout

2γ
= pin

2γ
, this implies that A = pin, B = sinφin − γ and K = pin sinφin

γ
, with the

matching condition

γ(sinφin − γ) = − 4
√

1 − γ2 sinφin pin. (3.14)

If φin = π + arccos(2πγ −
√

1 − γ2), then sinφin < 0 and (3.14) cannot be satisfied as

pin > 0 and γ > 0. If φin = π − arccos(2πγ −
√

1 − γ2), then the phase portrait in the

existence section shows that sinφin > γ, thus (sinφin − γ) > 0 and again (3.14) cannot be

satisfied. Thus no eigenvalue zero can occur at φout = 2π + arcsin γ. �

Lemma 7 allows us to conclude the stability of pinned fluxons. An important con-

sequence of Lemma 7 is that changes of stability of the pinned fluxons along a h-L curve

can only happen at points with dL
dh

= 0 (i.e. at critical points of this curve), as the two

special cases correspond to isolated pinned fluxons.

Theorem 8 For d = 0, every 0 < γ � 1
π
, and every L ∈ [Lmin(γ), Lmax(γ)], there is exactly

one stable pinned fluxon. This pinned fluxon is linearly and non-linearly stable (and asymp-

totically stable for α > 0). For L sufficiently large (L >

√
π+arcsin γ+arccos(2πγ−

√
1−γ2)

2γ
), the

stable pinned fluxons are non-monotonic.

See Figure 17 for an illustration of this theorem.
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Figure 17. (Colour online) Stability for d = 0 and γ = 0.15. The bold magenta curve represents

stable solutions, all other solutions are unstable. On the right, there is an example of a stable

monotonic pinned fluxon (at L = 0.38) and a stable non-monotonic one (at L = 10). Both stable

pinned fluxons have h = 1, i.e. they are near minimal, respectively, maximal length, which are at

Lmin = 0.35 and Lmax = 10.13.

Proof If γ = 1
π
, then only the inhomogeneity with half length exactly L =√

π
2
(arcsin 1

π
+

√
π2 − 1) −

√
π
2
(arcsin 1

π
+

√
π2 − 1 − π) ≈ 1.8 has a pinned fluxon. From

Lemma 7, it follows that the linearisation for this pinned fluxon has a largest eigenvalue

zero, so this pinned fluxon is linearly stable.

In Corollary 6, we have seen that the unique pinned fluxons for γ = 0 are stable.

If 0 < γ < 1
π
, then there are at least two pinned fluxons if L ∈ (Lmin, Lmax), see

Theorem 3. As seen before, the L–h curves for the pinned fluxons form three isolated

curves: φout = 4π − arccos(1 − h) (dashed green curve), the (dash-dotted red) curve of

pinned fluxons with φout = 2π + arccos(1 − h) and pout > 0 (exists for h > h2) and the

other pinned fluxons (solid blue curve). The type and colour coding refers to Figures 14

and 17. The fluxons on the solid blue curve exist for all 0 � γ � 1
π
; the existence of the

other curves depends on the value of γ.

The linearisation about the pinned fluxon at the minimum on the dash-dotted red curve

has an eigenvalue zero as dL
dh

= 0 at this point (Lemma 7). The associated eigenfunction is

a multiple of φ′
pin for x > L. On the dash-dotted red curve, pout > 0 and φ′

pin(x) < 0 for x
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large. Thus this eigenfunction has a zero. Using Sturm–Liouville theory, we can conclude

that the eigenvalue zero is not the largest eigenvalue. As there is only one fluxon with
dL
dh

= 0 on the red curves, all pinned fluxons on the dash-dotted red curve are linearly

unstable.

Similarly, the minimum and maximum on the dashed green curve are associated

with pinned fluxons whose linearisation has an eigenvalue zero. Again the associated

eigenfunction for x > L is a multiple of φ′
pin. As for the dash-dotted red curve, at the

minimum we have pout > 0 and φ′
pin(x) < 0 for x large. Thus this eigenfunction has a zero

and we can conclude that the eigenvalue zero is not the largest eigenvalue. The dashed

green curve is a closed curve with only two points with dL
dh

= 0, so topologically it follows

that the eigenvalue zero at the maximum cannot be the largest eigenvalue either. Thus

we can conclude that all pinned fluxons on the dashed green curve are linearly unstable.

Finally we consider the solid blue curve. We use the stability of the pinned fluxons

at d = 0, γ = 0 to derive the stability properties of the pinned fluxons on this curve.

The pinned fluxons that can be continued to γ = 0 are the connections between φin =

π−arccos(2πγ−1+h) = arccos(1−h−2πγ) and φout = 2π−arccos(1−h). The eigenvalues

of the linearisation operator are continuous in γ, hence those solutions are stable. Using

that zero eigenvalues can only occur if L(h) has a critical point, the solid blue curve can

be divided in stable and unstable solutions. The stable solutions are in the part of the

curve L(h) curve between the minimum and maximum that contains the pinned fluxons

with φin = π−arccos(2πγ−1+h) and φout = 2π−arccos(1−h). The pinned fluxons in the

other part are unstable as the zero eigenvalue is simple. In (3.10) and (3.11), an explicit

expression for the eigenfunction with the eigenvalue zero is given. Using this expression,

it can be verified that the eigenfunctions related to the zero eigenvalues on this curve

indeed do not have any zeroes.

So altogether we can conclude that for each length there is exactly one stable and at

least one unstable solution. The stable fluxons are non-monotonic if L is larger than the

length of the fluxon at h = h2(γ) = 1 −
√

1 − γ2 with φin = π − arccos(2πγ −
√

1 − γ2)

and φout = 2π + arcsin γ, hence L >

√
π+arcsin γ+arccos(2πγ−

√
1−γ2)

2γ
. �

4 General case (d > 0)

After analysing the existence and stability of pinned fluxons in micro-resistors with d = 0

in full detail, in this section we will sketch the existence and stability of the pinned fluxons

for a general micro-resistor or micro–resonator.

4.1 micro–resistors (0 < d < 1)

The existence of pinned fluxons for 0 < d < 1 follows from similar arguments as for the

case d = 0. Using the matching of appropriate solutions in the phase planes again, it can

be shown that pinned fluxons exist for 0 � γ � 1−d
π

. The Hamiltonian dynamics in the

inhomogeneity satisfies the relation

1
2
φ2
x − d(1 − cosφ) + γφ = H0(γ) + h,
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Figure 18. (Colour online) Phase portrait at d = 0.2 and γ = 0.15 (left) and γ = 0.22 (right).

Note that in the left graph, the third solid blue orbit has a fixed point. So the pinned fluxon with

φout = 2π + arccos
(

1−d−h
1−d

)
and pout < 0 does not exist for this h-value. Nearby pinned fluxons

will be in a defect with a length that goes to infinity. In the right graph, there are no fixed points

anymore as γ

d
> 1. Thus the defect lengths for which pinned fluxons exist are bounded.

where h is a parameter for the value of the Hamiltonian as before. The case γ = 0 (no

induced current) is more or less identical to before, with a unique pinned fluxon for any

L > 0. For γ > 0, a similar calculation as in the case d = 0 shows that there are two

possible entry angles:

φin = π − arccos

(
2πγ − (1 − d− h)

1 − d

)
or φin = π + arccos

(
2πγ − (1 − d− h)

1 − d

)
and up to three possible exit angles:

φout = 2π−arccos
(

1−d−h
1−d

)
, φout = 2π+arccos

(
1−d−h
1−d

)
or φout = 4π−arccos

(
1−d−h
1−d

)
,

with 0 � h � 2(1 − d − πγ). If γ > d > 0 (i.e. d is sufficiently close to zero), then there is

still a minimal length Lmin(γ) > 0 and a maximal length Lmax(γ) for the inhomogeneity

at which pinned fluxons can exist. However if γ is less than d (0 < γ � d), then there

is no upper bound on the possible length of the inhomogeneity anymore, i.e. Lmax = ∞.

This new phenomenon appears for γ/d � 1, due to the fact that now the dynamics in the

inhomogeneity has fixed points at (φ, p) = (2kπ + arcsin(γ/d), 0), k ∈ �. If h corresponds

to an orbit that contains such a fixed point, then the length of an orbit with pout < 0

goes to infinity. To illustrate this, in Figure 18, we have sketched the phase portraits for

d = 0.2 and γ = 0.15 < d and γ = 0.22 > d.

As before, the length of the inhomogeneity for the pinned fluxons parametrised with h

can be determined by using the relation |φx| =
√

2(H0(γ) + h+ d(1 − cosφ) − γφ) and

integrating the ODE, taking care of the sign of φx. The resulting integrals cannot

be expressed analytically in elementary functions anymore, but they can be evaluated

numerically. To illustrate this, we have determined the L–h curves as function of h for

d = 0.2 and γ = 0.15 (γ < d) and γ = 0.22 (γ > d). The L–h curves are presented in

Figure 19. Note the unbounded length curve for γ = 0.15.

In the following theorem, we summarise the existence of pinned fluxons for 0 < d < 1

and give their stability.
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Figure 19. (Colour online) L–h curves for d = 0.2 and γ = 0.15 (left) and γ = 0.22 (right). For

γ = 0.15, the L–h curves are unbounded as γ is less than d. The line and colour coding is as before,

hence the bold magenta curve correspond to the stable fluxons.

Theorem 9 For 0 < d < 1 and

• γ = 0, there is a unique stable pinned fluxon for each L � 0;

• 0 < γ � min
(
d, 1−d

π

)
, there is a minimal length Lmin(γ) > 0 such that for all L > Lmin

there exists at least two pinned fluxons (one for L = Lmin). For each L � Lmin, there is

exactly one stable pinned fluxon;

• d < γ � 1−d
π

, there are minimal and maximal lengths, Lmin(γ) > 0, respectively, Lmax(γ)

such that for all Lmin < L < Lmax there exists at least two pinned fluxons, one pinned

fluxon if L is maximal or minimal, and no pinned fluxons exist for other lengths. For each

Lmin � L � Lmax, there is exactly one stable pinned fluxon;

• for γ > 1−d
π

, there exists no pinned fluxon.

Note that the third case will be relevant only if 0 < d < 1
π+1

.

To prove the stability result for the pinned fluxons, we will use Theorem 4.5 from [21].

In [21], the stability of fronts or solitary waves in a wave equation with an inhomogeneous

non-linearity is considered. It links the existence of an eigenvalue zero of the linearisation

with critical points of the L–h curve. The proof has similarities with the proof of the case

d = 0 in Lemma 7, but several extra issues have to be overcome. Theorem 4.5 of [21],

applied to our pinned fluxons for 0 < d < 1, leads to the following lemma, which is very

similar to Lemma 7, which holds for the micro-resistor with d = 0.

Lemma 10 If 0 < d < 1, then the linear operator Lpin(x;L, γ, d) has an eigenvalue zero if

and only if

• dL
dh

= 0;

• or γ = 1−d
π

(this eigenvalue zero is the largest eigenvalue);
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• or γ is such that it solves (1 − d)(cosφmax(γ) + 1) = 2πγ and the pinned fluxon is such

that φin = 2π + φmax(γ) (this eigenvalue zero is not the largest eigenvalue).

The verification of Lemma 10 can be found in [21, §4.4]. As far as the special cases in this

lemma is concerned, if γ = 1−d
π

or γ is such that it solves (1 − d)(cos(φmax(γ) + 1) = 2πγ

and the pinned fluxon is such that φin = 2π + φmax(γ), then the pinned fluxon under

consideration corresponds an isolated ‘green’ point and dL
dh

does not exist. In the case of

γ = 1−d
π

, there is exactly one value of the length L for which there exists a pinned fluxon.

In the other case, there are more pinned fluxons, but on other branches. In the case of an

isolated pinned fluxon, either the derivative of the pinned fluxon is an eigenfunction with

the eigenvalue zero or a combination of multiples of the derivative of the pinned fluxon

is an eigenfunction.

The stability result of Theorem 9 follows by combining Lemmas 4 and 10.

Proof of Theorem 9 The existence is described in the first part of this section, in this

proof we focus on the stability. For 0 � d < 1 and γ = 0, there is a unique pinned

fluxon for each length L. It is straightforward to show that for each 0 � d < 1, the length

function L(h) is monotonic decreasing in h. Thus dL
dh

� 0 and none of the pinned fluxons

has an eigenvalue zero. As all pinned fluxons are non-linearly stable for d = 0 (Lemma 4)

and no change of stability can happen, all pinned fluxons with γ = 0 are non-linearly

stable for all 0 � d < 1.

If 0 < d < 1 and 0 < γ < 1−d
π

, then the L–h curve follows as a smooth deformation

from the curve for d = 0. And the unique stable pinned fluxon for each length follows.

If 0 < d < 1 and γ = 1−d
π

, then the pinned fluxon is an isolated point and Lemma 10

gives that it is stable. �

4.2 Micro-resonator (d > 1)

The existence results of pinned fluxons for d > 1 are slightly different from the ones for

d < 1. The main difference is the type of solutions used in the inhomogeneous system.

For d < 1, we used solutions that were part of unbounded orbits or homo/heteroclinic

orbits in the phase plane. For d > 1, we have to use periodic orbits. The most simple way

to understand this crucial difference between the micro-resistor and the micro-resonator

case is to consider the phase portraits without applied bias current (γ = 0), see Figure 20.

When d < 1, respectively d > 1, the (dash-dotted red) heteroclinic orbit of the system

outside the inhomogeneity is outside, respectively, inside, the (solid blue, respectively,

dashed green) heteroclinic orbit of the system inside the inhomogeneity, see Figure 20. As

a consequence, a pinned defect can only be constructed with (unbounded) orbits that are

outside the (solid blue) inhomogeneous heteroclinic orbit in the micro-resistor case, while

one has to use bounded, periodic orbits in micro-resonator case, see the bold green lines

in Figure 20.

One consequence is that if one solution for a inhomogeneity of a certain length exists,

then there are also solutions for inhomogeneities with lengths that are this length plus

a multiple of the length of the periodic orbit. This implies that the number of pinned

fluxons for a defect of length L may grow without bound as L increases – which is very
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Figure 20. (Colour online) Phase portraits at γ = 0 for various values of d. The dash-dotted red

curve is the heteroclinic connection at d = 1. The solid blue curves are orbits for d = 1
2

and the

dashed green ones are orbits for d = 2.

different from the micro-resistor (d < 1). We will focus on the existence of solutions,

which use less than a full periodic orbit as the other ones follow immediately from this.

Using similar techniques as in the previous sections, it can be shown that if d̂ is the

solution of − 5π
2

+arcsin 1
d
+

√
d2 − 1+d−1 = 0, (d̂ ≈ 4.37), then for d > d̂, pinned fluxons

exist for any 0 � γ � 1. If d � d̂, then pinned fluxons exist for 0 � γ < γmax, where γmax(d)

is the (implicit) solution of −2πγ−γ
(
arcsin γ − arcsin γ

d

)
+

√
d2 − γ2−

√
1 − γ2+(d−1) = 0.

For illustration, phase portraits for d = 4 and various values of γ are sketched in

Figure 21. This illustrates that the solutions used in the inhomogeneous system (solid

blue lines) are all part of a periodic orbit. Note that for γ > 0 both unstable manifolds

of arcsin γ and only the unbounded stable manifold of 2π + arcsin γ are used as opposed

to the micro-resistor case where only the bounded unstable manifold of arcsin γ and both

stable manifolds of 2π + arcsin γ are used.

As before, the dynamics in the inhomogeneity satisfies the relation

1
2
φ2
x − d(1 − cosφ) + γφ = H0(γ) + h,

where h is a parameter for the value of the Hamiltonian. Again it can be shown that the

entry and exit angles satisfy

cosφin =
2πγ + d− 1 + h

d− 1
and cosφout =

d− 1 + h

d− 1
,

where now −2(d − 1) � h < hmax. Here hmax corresponds to the h-value of the orbit

homoclinic to arcsin γ
d

in the inhomogeneous system; it can be shown that hmax < 0. As

we use periodic orbits inside the inhomogeneity, the entry and exit angles will differ by

less than 2π. For any h value in [−2(d− 1), hmax), there will be pinned fluxons with entry

angles between arcsin γ
d

and 2π. For γ small relative to d, entry angles less than arcsin γ
d

are also possible and they can be related to smaller (more negative) h values. The p-values

for the exit points are always positive, while the entry points can have both positive and
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Figure 21. (Colour online) Phase portrait at d = 4 and γ = 0.2 (upper row), γ = 0.5 (bottom,

left) and γ = 0.95 (bottom, right). As before, the dash-dotted red curves are the unstable manifolds

to arcsin γ and the dashed magenta ones are the stable manifolds to 2π + arcsin γ. The solid blue

curves are orbits inside the inhomogeneity. The inner solid blue curve with angles between 0 and 2π

is the orbit with the minimal h-value for which pinned fluxons exist. The solid blue curves give rise

to pinned fluxons up to (but not including) the solid blue homoclinic connection to arcsin( γ
d
). Some

of the periodic orbits with negative angles will also play a role in the construction of the pinned

fluxons. If γ = 0.95 > γmax(d) ≈ 0.9 (right plot), the solid blue homoclinic orbit (that encloses the

fluxon’s limit value at −∞, i.e. (arcsin γ, 0)) does not intersect the dashed magenta stable manifold;

illustrating that there cannot be pinned fluxons for γ > γmax(d).

negative p-values if the entry angle is larger than arcsin γ
d
. The pinned fluxons with entry

angles less than arcsin γ have only negative pin-values and hence those pinned fluxons are

non-monotonic and ‘dip down’.

For γ = 0, at least one pinned fluxon exists for each L � 0. If L is sufficiently large,

there will be more pinned fluxons. This is different to the case with d < 1, where for γ = 0,

there is a unique pinned fluxon for each length, it is due to the fact that the pinned fluxons

are built from periodic orbits (that may be travelled in various ways before leaving the

inhomogeneity). For γ > 0, there is minimum length Lmin such that there are at least two

pinned fluxons for each length L > Lmin (one for L minimal). The L–h curves for d = 4

and various γ values are given in Figure 22. Only lengths of the pinned fluxons that use

less than a full periodic orbit are plotted.

https://doi.org/10.1017/S0956792511000301 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792511000301


232 G. Derks et al.

−6 −4 −2 0
0

0.5

1

1.5

2

2.5

3

h

L

−6 −5 −4 −3 −2
0

0.5

1

1.5

2

2.5

h

L

−6 −5.5 −5 −4.5 −4 −3.5
0

0.5

1

1.5

h

L

Figure 22. (Colour online) L–h curves at d = 4 and γ = 0 (left), γ = 0.2 (middle) and γ = 0.5 (right).

The solid blue and dash-dotted red curves are associated with pinned fluxons with arcsin γ/d <

φin < π. The dash-dotted red curves are pinned fluxons with pin < 0 and arcsin γ < φin < π. The

pinned fluxons in the solid blue curve have pin > 0 for φin > arcsin γ and pin < 0 for φin < arcsin γ.

The dashed green curves are associated with pinned fluxons with φin > π. In the middle panel

(γ = 0.2), there are also black curves, which are associated with pinned fluxons with φin < arcsin γ

d
.

The solid black curves are lengths for pinned fluxons with −2π + arcsin γ

d
< φin < arcsin γ

d
, the

dashed ones for pinned fluxons with −4π + arcsin γ

d
< φin < −2π + arcsin γ

d
and the dotted ones for

pinned fluxons −6π + arcsin γ

d
< φin < −4π + arcsin γ

d
.

In the following theorem, we summarise the existence of pinned fluxons for d > 1 and

give their stability.

Theorem 11 Let d̂ be the solution of − 5π
2

+ arcsin 1
d

+
√
d2 − 1 + d − 1 = 0 (d̂ ≈ 4.37)

and for d > 1, let γmax(d) be the (implicit) solution of −2πγ − γ
(
arcsin γ − arcsin γ

d

)
+√

d2 − γ2 −
√

1 − γ2 + (d− 1) = 0.

• For d > 1 and γ = 0, there is at least one pinned fluxon for each L � 0 and all pinned

fluxons are unstable.

• For 1 < d � d̂ and 0 < γ < γmax(d), there is a minimal length Lmin(γ) > 0 such that for all

L > Lmin there exist at least two pinned fluxons (one for L = Lmin). For each L � Lmin,

there is at least one stable pinned fluxon.

• For d > d̂ and 0 < γ � 1, there is a minimal length Lmin(γ) > 0 such that for all L > Lmin

there exist at least two pinned fluxons (one for L = Lmin). For each L � Lmin, there is at

least one stable pinned fluxon.

In Figure 22, the stable pinned fluxons are the pinned fluxons on the increasing part of

the lower right solid blue curve. Note that these pinned fluxons are non-monotonic past

the meeting point with the dash-dotted red curve, hence for most lengths. The fluxons

on the other solid blue curve and dash-dotted red and dashed green curves are unstable.

As before, the proof of the stability properties of Theorem 11 is based on Theorem 4.5
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from [21]. The proof of Theorem 11 is very similar to the proof of Theorems 8 and 9.

The main difference is that we can not track our stability arguments back to the case

d = 0 (i.e. Lemma 4) as we did before. The role of Lemma 4 will now be taken over by

Lemma 12 in Appendix, in which it is explicitly established that the pinned fluxon on the

solid blue curve has exactly one positive eigenvalue for γ = 0 and d near one.

The stability of the fluxons on the black curves cannot easily be related to fluxons at

γ = 0 (they ‘split’ in a homoclinic ‘dip’ and a fluxon for γ = 0). So a stability analysis for

this case goes outside the scope of this paper. In section 5, we will show numerically that

there are some stable fluxons on the black curve.

4.3 A micro-resonator approximating a localised inhomogeneity

There have been quite a number of investigations on the influence of a localised inhomo-

geneity, i.e. D(x) = (1+ µδ(x)) or D(x) = (1+
∑N

i=1 µiδ(x− xi)) in (1.1). In this section, we

will confirm that our existence and stability results, applied to short micro-resonators with

large d, reproduce in the limit for L → 0 and d → ∞ the existence and stability results for

pinning by micro-resistors in [25]. In [25], it is shown that for D(x) = (1 + µδ(x)) and γ,

µ and α of order ε, with ε small and πγ
µ

� 4

3
√

3
+ O(ε), there is one stable and one unstable

pinned fluxon, both approximated by φ0(x − X0) + O(ε), where X0 are the two solutions

of − πγ
2µ

+ sech2X tanhX.

To approximate the localised inhomogeneities of δ-function type with finite length ones,

we look at micro-resonators with length L = 1/(2d) and d = 1 + µd for d large. Thus the

micro-resonators have short lengths and we can restrict to pinned fluxons with

φin = arccos

(
2πγ + d− 1 + h

d− 1

)
= arccos

(
1 +

2πγ + h

µd

)
, pin > 0,

and

φout = arccos

(
d− 1 + h

d− 1

)
= arccos

(
1 +

h

µd

)
.

Hence the pinned fluxons of [25] correspond to solutions on the lower solid blue curve in

Figure 22. Introducing h = µdh, we get that −2 < h < 0 and we are interested in h away

from zero as h-values close to zero correspond to long lengths. Using the expressions for

φin, pin φout and pout and the ODE for the pinned fluxon, we can derive an asymptotic

expression for the length L(h) if d is large and γ, µ are order ε, where ε is small:

L(h) =
πγ

−hµd
√

2(2 + h)
+ O(d−2 + εd−1), ε, d−1 → 0.

Thus L(h) has a minimum at h = − 4
3

+ O(d−1 + ε) and the condition L(h) = 1/2d can

be satisfied if the cubic h2(2 + h) = 2 π2γ2

µ2 + O(d−1 + ε) can be solved for some h < 0. For

h < 0, this cubic has a maximum at h = − 4
3
+O(d−1 + ε), thus L(h) = 1

2d
has two solutions

with h between −2 and 0 iff πγ
µ

� 4

3
√

3
+ O(d−1 + ε) (i.e. there are no solutions for γ/µ too

large). From the analysis in the previous section, we can conclude that this corresponds

to one stable pinned fluxon (least negative value of h) and one unstable pinned fluxon.
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Finally for γ = O(ε), with ε small, both the unstable manifold to arcsin γ and the stable

manifold to 2π + arcsin γ are close to the heteroclinic connection for the unperturbed

sine-Gordon equation. Thus for x > L, we have φpin(x) = φ0(x − X0) + O(ε), where φ0

is the shape of the stationary fluxon in the sine-Gordon equation (and a similar relation

for x < −L). Substituting this into the equation for φout, with L = 1/2d (hence h is a

solution of the cubic introduced earlier), we get that X0 is one of the two solutions of

− πγ
2µ

+ sech2X tanhX = 0.

5 Conclusions and further work

This paper exhibits a full analysis for the existence and stability of pinned fluxons in

micro-resistors and micro-resonators for which the Josephson tunneling critical current

is modelled by a step function. It is shown that for fixed d (Josephson tunneling critical

current inside the inhomogeneity) and fixed bias current γ > 0, there is an interval of

lengths for which a rich family of pinned fluxons exists. In the case, when an induced

current is present, there is a lower bound on the length of inhomogeneities for which

pinned fluxons can exist. If the inhomogeneity is too short, no pinned fluxons can be

sustained. The lower bound on the length increases if the induced current increases. For

micro-resistors with a sufficiently large induced current, there is also an upper bound on

the length for pinned fluxons and the upper and lower bounds collide when the maximal

value of the induced current for which pinned fluxons can exist is attained.

Compared to the case of homogeneous wave equations, a new phenomenon is observed:

longer micro-resistors and micro-resonators have non-monotonic stable pinned fluxons. In

the case of micro-resistors (d < 1), the non-monotonic stable pinned fluxons have a ‘bump’

inside and behind the inhomogeneity and the values in the bump exceed the asymptotic

state 2π + arcsin γ. In the case of the micro-resonators (d > 1), the stable pinned fluxons

have a ‘dip’ before and near the inhomogeneity and the values in the dip are between

arcsin γ/d and arcsin γ, i.e. below the left asymptotic state.

To complement and illustrate the analytical results in the previous sections, we have

numerically solved the stationary equation (1.4) for the pinned fluxons and the cor-

responding linear eigenvalue problem (1.6) using a simple finite difference method and

presented the results in Figures 23–26. Without loss of generality as far as stability is

concerned, we depict the eigenvalues for α = 0, i.e. Λ = λ2. Thus an instability is indicated

by the presence of a pair of eigenvalues with non-zero real parts.

First we consider the case of inhomogeneous Josephson junctions for a micro-resistor

with d = 0. As is shown in Figure 17, when γ = 0.15 and the defect length parameter

L = 4.2, there are four possible pinned fluxons. In Figure 23, the numerically obtained

profiles of pinned fluxons are shown; all of them are clearly non-monotonic. The insets

show the eigenvalues of the fluxons in the complex plane. Only one of them has no

eigenvalues with non-zero real parts, confirming that there is exactly one stable pinned

fluxon, which is non-monotonous for these parameter values. The four pinned fluxons

depicted in Figure 23 belong to two different families, the ones with the smallest bump, i.e.

Figure 23, panel (a), are on the solid blue curve in Figure 17 and the others, i.e. Figure 23,

panel (b), are on the dashed green curve in Figure 17.

In Figure 17, the existence and the stability of the pinned fluxons for fixed d and γ

are presented in the (h, L)-plane and it is shown that each pair of the fluxons collide in
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Figure 23. (Colour online) The four pinned fluxons admitted by the Josephson system with d = 0,

L = 4.2, and γ = 0.15. The insets show the eigenvalues of each fluxon; the top inset is related to the

upper fluxon and the bottom inset to the lower fluxon. The vertical dashed lines show the edges of

the defect.
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Figure 24. (Colour online) The largest eigenvalue Λ = λ2 of the various fluxons as function of

the induced current γ. The maximal eigenvalue at γ = 0.15 of the fluxons in Figure 23 is at the

intersection between the curves and the vertical dashed line. Note that the solid blue and dashed

green fluxons disappear in a saddle-node bifurcation.

a saddle-node bifurcation at a critical L for a fixed γ. To complement these results, we

take L = 4.2 and numerically follow the largest eigenvalue Λ = λ2 of the various fluxons

when the induced current γ changes. The results are shown in Figure 24. As before, the

line and colour coding corresponds the one in Figure 17. Figure 24 shows that there is

a critical current for the existence of a pinned fluxon for a given length and depth of

the inhomogeneity. The solid blue and dashed green fluxons disappear in a saddle-node

bifurcation. This happens at a smaller value of γ for the dashed green fluxons (solutions

in panel (b) in Figure 23) than for the solid blue fluxons (panel (a) in Figure 23). A
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Figure 25. (Colour online) The same as in Figure 23, but for a micro-resonator with d = 4,

L = 0.75 and γ = 0.2, where there are five pinned fluxons. Note that there are two stable fluxons,

one in the left plot (on the solid blue curve) and one in the right plot (on the dotted black curves).
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Figure 26. (Colour online) The same as in Figure 24, but for the five pinned fluxons in Figure 25.

Note the two stable fluxons, one on the solid blue and one on dotted black curve.

physical interpretation of the saddle-node bifurcation is that the inhomogeneity is too

short or long to pin a fluxon when the applied current exceeds the critical value. For

γ = 0.15, there are no dash-dotted red fluxons at this length, but they will exist for smaller

values of γ. The dash-dotted red fluxons disappear when the fluxon ‘splits’ in a homoclinic

connection to 2π + arcsin γ and a solid blue pinned fluxon, see Remark 2. Only one curve

of dash-dotted red fluxons is visible. In theory, there is a second curve, but this exist in a

tiny γ-interval only and hence is not visible.

In Figures 25–26, we consider the case of a micro-resonator with d = 4. From the

middle panel in Figure 22, it follows that there exist five pinned fluxons when γ = 0.2,

and L = 0.75. In Figure 25, we show the numerically computed profiles of those pinned

fluxons and their eigenvalues, where the line and colour coding is as in Figure 22. The

solid blue non-monotonic fluxon is stable while the solid blue monotonic one and dash-

dotted red one are unstable. This confirms our analytical findings (see Theorem 11: there

is at least one stable pinned fluxon). Moreover it shows that there can be more than one
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stable fluxon: one of the fluxons on the black curve is stable too. So for d > 1, there is

bi-stability for some values of L and γ.

In Figure 26, we also present the critical eigenvalues of the five fluxons as a function of

γ when L = 0.75 is fixed. As in Figure 24, the pairs of solid blue and black fluxons collide

in a saddle-node bifurcation, while the dash-dotted red fluxon breaks up at the maximal

value of γ.

For future research, it is of interest to expand our study to the case of two-dimensional

Josephson junction with inhomogeneities. A particular example is the so-called window

Josephson junction, which is a rectangular junction surrounded by an inhomogeneous ’idle’

region with d = 0. The interested reader is referred to [4, 5, 8] and references therein for

reviews of theoretical and experimental results on window Josephson junctions. Recently

fluxon scatterings in a 2D setup in the presence of a non-zero defect has been considered

as well in [29].

One can also apply our method to study the existence of trapped solitons by inhomo-

geneities in Schrödinger equations, such as pinned optical solitons in a non-linear Bragg

media with a finite-size inhomogeneity (see, e.g. [14] and references therein) and trapped

Bose–Einstein condensates by a finite square-well potential (see, e.g. [9, 27]). In general,

the ideas presented in this paper are applicable to any system with locally (piecewise

constant) varying parameters in the equations as can be seen in papers by some of

us ([15, 24]).

Finally the simulations in Section 2 show how inhomogeneities can capture travelling

fluxons. This suggests that the pinned fluxons analysed in this paper can be attractive

or repelling, just as observed in [25] in case of the localised inhomogeneities. We are

currently investigating the attractive and repelling interaction of the travelling fluxons

with the pinned fluxons and will report on this in a future paper.
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Appendix A Largest eigenvalue of linearisation with no induced current

Proof of Lemma 4 Let γ = 0, d = 0, and fix the length L of the inhomogeneity. We denote

the unique pinned fluxon with length L by φpin(x) (suppressing all other parameters).

From (3.3), we see that φpin equals the sine-Gordon fluxon outside the inhomogeneity

(|x| > L) and the linearisation about the sine-Gordon fluxon is well studied. The shifted

pinned fluxon φpin(x) − π is an odd function, hence a quick inspection shows that the

operator Lpin(x) is even in x (we suppress all other parameters in Lpin). All eigenvalues

of Lpin are simple, thus Lpin(x) being even implies that all eigenfunctions are odd or

even. The eigenfunction for the largest eigenvalue does not have any zeroes, thus this

eigenfunction is even.
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For fixed Λ, the linear ODE associated with (Lpin − Λ)Ψ = 0 has two linearly

independent solutions. The asymptotic limits of φpin for x → ±∞ correspond to saddle

points in the ODE (1.4) and the decay rate to these fixed points is like e−x. This implies

that for Λ > −1, there is one solution of the ODE (Lpin −Λ)Ψ = 0 that is exponentially

decaying at +∞ and there is one solution that is exponentially decaying at −∞. We denote

the exponentially decaying function at −∞ by v−(x;L,Λ).

In [23], the linearisation of the sine-Gordon equation about the fluxon φ0 is studied in

great detail. Using the results in this paper, we can derive an explicit expression for the

solutions v−(x;L,Λ) (see also [10]), they are

v−(x;L, 0) = sech(x+ x∗(L)), x < −L

v−(x;L,Λ) = eµ(x+x
∗(L)) [tanh(x+ x∗(L)) − µ], x < −L where µ =

√
Λ+ 1,

where x∗(L) is given in Lemma 1. In the inhomogeneity, the linearised operator is simply

Lpin = Dxx, hence the even solutions of Lpin − Λ are

vinhom(x;Λ) =A cos(
√

−Λx), |x| < L, if Λ < 0;

vinhom(x; 0) =A, |x| < L;

vinhom(x;Λ) =A cosh(
√
Λx), |x| < L, if Λ > 0.

To have a continuously differentiable solution of (Lpin − Λ)ψ = 0 in H2(�), we have to

match v− and vinhom and its derivatives at x = −L (the conditions for x = L following

immediately from this as the eigenfunction is even). This gives the following:

• If Λ = 0 (thus µ = 1):

A = sech ξ∗ and 0 = −sech ξ∗ tanh ξ∗,

with ξ∗ = −L+ x∗(L). This implies that ξ∗ = 0 and A = 0. From the relation for x∗(L)

in Lemma 1, it follows ξ∗ � 0 only if L = 0, hence when there is no inhomogeneity.

This confirms that the stationary sine-Gordon fluxon (the pinned fluxon for L = 0) has

an eigenvalue zero, but none of the pinned fluxons with L > 0 will have an eigenvalue

zero for its linearisation Lpin.

• If Λ > 0 (thus µ > 1), with y∗ = L
√
µ2 − 1 and again ξ∗ = −L+ x∗(L):

A cosh y∗ = eµξ
∗
[tanh ξ∗ − µ],

−
√

1 − µ2 A sinh y∗ = eµξ
∗
[µ(tanh ξ∗ − µ) + sech2ξ∗].

Hence µ (thus Λ) is determined by

µ [tanh ξ∗ − µ] + sech2ξ∗ = −
√
µ2 − 1 [tanh ξ∗ − µ] tanh y∗.

Using Lemma 1, this can be written as a relation between µ and φin (and hence µ and
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L as there is a bijection between φin ∈ (0, π) and L > 0):

−µ
[
µ+ 1

2

√
2(1 + cosφin)

]
+ 1

2
(1 − cosφin)

=
√
µ2 − 1

[
µ+ 1

2

√
2(1 + cosφin)

]
tanh

(√
µ2 − 1

π − φin√
2(1 − cosφin)

)
.

(A 1)

It can be seen immediately that the right-hand side of (A 1) is positive. The left-hand

side of (A 1) is always negative for µ > 1 as

−µ (µ+ T ) + 1 − T 2 = 1 − µ2 − µT − T 2 � −T − T 2 < 0,

where we wrote T = 1
2

√
2(1 + cosφin), hence 1

2
(1 − cosφin) = 1 − T 2. Thus (A 1) has

no solutions and there do no exist any eigenvalues Λ > 0.

• If −1 < Λ < 0 (thus 0 < µ < 1), again with ξ∗ = −L+ x∗(L) and now y∗ = L
√

1 − µ2:

A cos y∗ = eµξ
∗
[tanh ξ∗ − µ] and

√
1 − µ2 A sin y∗ = eµξ

∗
[µ(tanh ξ∗ − µ) + sech2ξ∗].

Hence µ (thus also Λ) is determined by

µ [tanh ξ∗ − µ] + sech2ξ∗ =
√

1 − µ2 [tanh ξ∗ − µ] tan y∗.

Using the same relations as before, this can be written as a relation between µ and φin:

−µ
[
µ+ 1

2

√
2(1 + cosφin)

]
+ 1

2
(1 − cosφin)

= −
√

1 − µ2
[
µ+ 1

2

√
2(1 + cosφin)

]
tan

(√
1 − µ2

π − φin√
2(1 − cosφin)

)
.

Bringing all terms to the left and writing T (L) = 1
2

√
2(1 + cosφin(L)) ∈ (0, 1) gives on

the left

F(L, µ) := −µ [µ+ T ] + 1 − T 2 +
√

1 − µ2 [µ+ T ] tan (
√

1 − µ2L).

Taking µ = 1 in this expression gives F(L, 1) = −T − T 2 � 0. If L < π
2
, then

F(L, 0) = 1 −T 2 +T tanL > 0 as T ∈ (0, 1). If L � π
2
, then φin <

π
2

and T > 1
2

√
2, thus

F(L,

√
L2−(π/2−ε)2

L
) � −2 + (π/2−ε)

√
2

2L
tan( π

2
− ε) = O( 1

Lε
), for ε → 0. As L is fixed, we can

choose ε such that this expression is positive. Thus we can conclude that for all L > 0,

there is at least one µ ∈ (0, 1) that solves F(L, µ) = 0. If L gets very large, then there

will be many solutions, but we are interested in the largest one.
�

Lemma 12 For γ = 0 and d = 1 + ε with ε small, the linearisation Lpin(x;L, 0, 1 + ε)

about the monotone pinned fluxon φpin(x;L, 0, 1 + ε) has a largest eigenvalue of the form

εΛ1 + O(ε2) with

Λ1 =

sech2L [−L2sech4L(1+ tanh2 L)+2L tanhL(sech4L+2(1+sech2L))+ tanh2 L(6 + sech2L)]

16(Lsech2L+ tanhL)
.
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Figure A 1. The eigenvalue factor Λ1 as function of L.

See Figure A 1 for a sketch of Λ1. Furthermore if there are any other eigenvalues, then they

must be near −1. Thus for γ = 0 and d close to 1, the monotone pinned fluxons with d > 1

are linearly unstable. The non-linear stability of Theorem 9 is confirmed by the sign of Λ1

for d < 1.

Proof The monotone pinned fluxon for γ = 0 and d = 1 + ε with ε � 1 can be written as

φpin(x;L, 0, 1 + ε) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ0(x+ εx∗

1(L, ε)), x < −L,

φ0(x) + εφ1(x;L, ε), |x| < L,

φ0(x− εx∗
1(L, ε)), x > L.

Here φ1(x;L, ε) is an odd function satisfying

εDxxφ1 − (1 + ε) sin(φ0 + εφ1) + sinφ0 = 0, |x| < L, (A 2)
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and x∗
1(L, ε) is such that φ0(−L + εx∗

1) = φin = φ0(−L) + εφ1(−L). To find an approx-

imation for φ1 and x∗
1, we introduce the notation φ∗

0 = φ0(−L), and φ∗
1 = φ1(−L), thus

εφ∗
1 = φin − φ∗

0. The half length L is

L =

∫ π

φin

dφ√
2(h+ (1 + ε)(1 − cosφ)

=

∫ π

φin

dφ√
2(1 − cosφin + (1 + ε)(cosφin − cosφ))

,

where we used that h = ε(cosφin − 1). With φin = φ∗
0 + εφ∗

1, this becomes

L=

∫ π

φ∗
0

dφ√
2(1 − cosφ)

− ε

2

∫ π

φ∗
0

cosφ∗
0 − cosφ

(2(1 − cosφ))3/2
dφ−

∫ φ∗
0+εφ

∗
1

φ∗
0

dφ√
2(1 − cosφ)

+ O(ε2)

=L− ε

2

∫ π

φ∗
0

cosφ∗
0 − cosφ

(2(1 − cosφ))3/2
dφ− ε

∫ φ∗
1

0

dφ√
2(1 − cosφ∗

0)
+ O(ε2).

Rearranging this expression and using that cosφ∗
0 = 1 − 2sech2(L), we get an approxima-

tion for φ∗
1

φ∗
1 = − sechL

8

[
2L(1 + tanh2 L) − 2 tanhL

]
+ O(ε).

Furthermore x∗
1 is given by φ0(−L+ εx∗

1) = φ∗
0 + εφ∗

1. An expansion of φ0(−L+ εx∗
1) shows

that

φ∗
0 + εx∗

1φ
′
0(−L) = φ∗

0 − εsechL

8

[
2L(1 + tanh2 L) − 2 tanhL

]
+ O(ε2).

With φ′
0(−L) = 2sech(L), this shows that

x∗
1 = − 1

16

[
2L(1 + tanh2 L) − 2 tanhL

]
+ O(ε).

Next we derive an approximation for the function φ1, using the differential equa-

tion (A 2). Expanding (A 2) in ε gives

Dxxφ1 − φ1 cosφ0 − sinφ0 = O(ε) or L0φ1 = sinφ0 + O(ε), (A 3)

with L0 = Dxx − cosφ0. The homogeneous problem L0ψ = 0 has two independent

solutions: ψb(x) = sechx and ψu(x) = x sechx + sinh x. In this, ψb(x) = 1
2
d
dx
φ0(x) is

bounded and ψu(x) is unbounded as x → ±∞. By the variation-of-constants method, we

find the general solution to (A 3)

φ1(x) = x sechx+ A sechx+ B [x sechx+ sinh x] + O(ε),

with A,B ∈ �. As φ1 must be odd, it follows that A = 0. Furthermore the boundary

condition at x = −L gives φ∗
1 = −B (L sechL+ sinhL) − L sechL+ O(ε), hence

B =
sechL(L tanh2 L− tanhL− 3L)

4(L sechL+ sinhL)
.

Altogether we can conclude that φ1(x) = φ11(x) + O(ε) with

φ11(x) = x sechx+
sechL(L tanh2 L− tanhL− 3L)

4(L sechL+ sinhL)
[x sechx+ sinh x] .
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To find the largest eigenvalue of Lpin(x; h, 0, 1 + ε), we will use perturbation theory.

First we observe that for any L � 0, the linearisation L0 := Lpin(x;L, 0, 1) about the

fluxon φ0 has largest eigenvalue Λ = 0 with eigenfunction is φ′
0. We have for |x| < L

Lpin(x; h, 0, 1 + ε) = Dxx − (1 + ε) cos(φ0 + εφ1) = L0(x) − ε (cosφ0 − φ1 sinφ0) + O(ε2)

and for x < −L

Lpin(x; h, 0, 1 + ε) = L0(x+ εx∗
1) = L0(x) + εx∗

1φ
′
0(x) sinφ0 + O(ε2).

Thus the largest eigenvalue for Lpin(x; h, 0, 1 + ε) is Λ = 0 + εΛ1 + O(ε2) and the eigen-

function is ψ = φ′
0 + εψ1 + O(ε2). The equation for Λ1 and ψ1 is

L0ψ1 = Λ1φ
′
0 + f0(x), where f0(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−x∗

1 sinφ0(φ
′
0)

2, x < −L,

(cosφ0 − φ11 sinφ0)φ
′
0, |x| < L,

x∗
1 sinφ0(ψ

′
0)

2, x > L.

(A 4)

From (A3) and the fact that L0φ
′
0 = 0, it follows that

L0φ11 = sinφ0, hence L0φ
′
11 = 2 (cosφ0 − φ11 sinφ0)φ

′
0,

L0φ
′
0 = 0, hence L0φ

′′
0 = − sinφ0(φ

′
0)

2.

Thus

f0(x) = L0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x∗

1φ
′′
0(x), x < −L,

1
2
φ′

11(x), |x| < L,

−x∗
1φ

′′
0(x), x > L.

To find Λ1, we multiply the eigenvalue equation (A 4) with φ′
0, integrate it, use integration

by parts and L0φ
′
0 = 0 and get

Λ1

∫ ∞

−∞
(φ′

0)
2 dx = 2x∗

1

[
(φ′′

0(L))2 − φ′′′
0 (L)φ′

0(L)
]

− φ′′
11(L)φ′

0(L) + φ′
11(L)φ′′

0(L),

with the explicit expressions for φ0 and φ1, we get the expression in the Lemma.

As the linearisation L0 about the sine-Gordon fluxon has exactly one eigenvalue

(the one at zero), it follows immediately that if the perturbed linear operator has more

eigenvalues, they have come out of the continuous spectrum, hence they are near −1.

�
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