14 research outputs found

    Biochemical mechanisms determine the functional compatibility of heterologous genes

    Get PDF
    Elucidating the factors governing the functional compatibility of horizontally transferred genes is important to understand bacterial evolution, including the emergence and spread of antibiotic resistance, and to successfully engineer biological systems. In silico efforts and work using single-gene libraries have suggested that sequence composition is a strong barrier for the successful integration of heterologous genes. Here we sample 200 diverse genes, representing >80% of sequenced antibiotic resistance genes, to interrogate the factors governing genetic compatibility in new hosts. In contrast to previous work, we find that GC content, codon usage, and mRNA-folding energy are of minor importance for the compatibility of mechanistically diverse gene products at moderate expression. Instead, we identify the phylogenetic origin, and the dependence of a resistance mechanism on host physiology, as major factors governing the functionality and fitness of antibiotic resistance genes. These findings emphasize the importance of biochemical mechanism for heterologous gene compatibility, and suggest physiological constraints as a pivotal feature orienting the evolution of antibiotic resistance

    Early microbiota, antibiotics and health

    No full text
    The colonization of the neonatal digestive tract provides a microbial stimulus required for an adequate maturation towards the physiological homeostasis of the host. This colonization, which is affected by several factors, begins with facultative anaerobes and continues with anaerobic genera. Accumulating evidence underlines the key role of the early neonatal period for this microbiota-induced maturation, being a key determinant factor for later health. Therefore, understanding the factors that determine the establishment of the microbiota in the infant is of critical importance. Exposure to antibiotics, either prenatally or postnatally, is common in early life mainly due to the use of intrapartum prophylaxis or to the administration of antibiotics in C-section deliveries. However, we are still far from understanding the impact of early antibiotics and their long-term effects. Increased risk of non-communicable diseases, such as allergies or obesity, has been observed in individuals exposed to antibiotics during early infancy. Moreover, the impact of antibiotics on the establishment of the infant gut resistome, and on the role of the microbiota as a reservoir of resistance genes, should be evaluated in the context of the problems associated with the increasing number of antibiotic resistant pathogenic strains. In this article, we review and discuss the above-mentioned issues with the aim of encouraging debate on the actions needed for understanding the impact of early life antibiotics upon human microbiota and health and for developing strategies aimed at minimizing this impact.The work carried out in the authors’ laboratories on the early life microbiota is founded by the EU Joint Programming Initiative—A Healthy Diet for a Healthy Life (JPI HDHL, http://www.healthydietforhealthylife.eu/) and the Spanish Ministry of Economy and Competitiveness (MINECO) (Project EarlyMicroHealth). The Grant GRUPIN14-043 from “Plan Regional de Investigación del Principado de Asturias” is also acknowledged. A. M. N. is the recipient of a JPI predoctoral fellowship and N. S. benefits from a JdC contract, from the Spanish Ministry of Economy and Competitiveness (MINECO).Peer reviewe
    corecore