16 research outputs found

    Rubus crataegifolius Bunge regulates adipogenesis through Akt and inhibits high-fat diet-induced obesity in rats

    Get PDF
    BACKGROUND: Obesity is one of the greatest public health problems and major risk factors for serious metabolic diseases and significantly increases the risk of premature death. The aim of this study was to determine the inhibitory effects of Rubus crataegifolius Bunge (RCB) on adipocyte differentiation in 3 T3-L1 cells and its anti-obesity properties in high fat diet (HFD)-induced obese rats. METHODS: 3 T3-L1 adipocytes and HFD-induced obese rats were treated with RCB, and its effect on gene expression was analyzed using RT-PCR and Western blotting experiments. RESULTS: RCB treatment significantly inhibited adipocyte differentiation by suppressing the expression of C/EBPβ, C/EBPα, and PPARγ in the 3 T3-L1 adipocytes. Subsequently, the expression of the PPARγ target genes aP2 and fatty acid synthase (FAS) decreased following RCB treatment during adipocyte differentiation. In uncovering the specific mechanism that mediates the effects of RCB, we demonstrated that the insulin-stimulated phosphorylation of Akt strongly decreased and that its downstream substrate phospho-GSK3β was downregulated following RCB treatment in the 3 T3-L1 adipocytes. Moreover, LY294002, an inhibitor of Akt phosphorylation, exerted stronger inhibitory effects on RCB-mediated suppression of adipocyte differentiation, leading to the inhibition of adipocyte differentiation through the downregulation of Akt signaling. An HFD-induced obesity rat model was used to determine the inhibitory effects of RCB on obesity. Body weight gain and fat accumulation in adipose tissue were significantly reduced by the supplementation of RCB. Moreover, RCB treatment caused a significant decrease in adipocyte size, associated with a decrease in epididymal fat weight. The serum total cholesterol (TC) and triglyceride (TG) levels decreased in response to RCB treatment, whereas HDL cholesterol (HDL-C) increased, indicating that RCB attenuated lipid accumulation in adipose tissue in HFD-induced obese rats. CONCLUSION: Our results demonstrate an inhibitory effect of RCB on adipogenesis through the reduction of the adipogenic factors PPARγ, C/EBPα, and phospho-Akt. RCB had a potent anti-obesity effect, reducing body weight gain in HFD-induced obese rats

    cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism.

    No full text
    Beta-adrenergic agonists stimulate cardiac contractility and simultaneously blunt this response by coactivating NO synthase (NOS3) to enhance cGMP synthesis and activate protein kinase G (PKG-1). cGMP is also catabolically regulated by phosphodiesterase 5A (PDE5A). PDE5A inhibition by sildenafil (Viagra) increases cGMP and is used widely to treat erectile dysfunction; however, its role in the heart and its interaction with beta-adrenergic and NOS3/cGMP stimulation is largely unknown. In nontransgenic (control) murine in vivo hearts and isolated myocytes, PDE5A inhibition (sildenafil) minimally altered rest function. However, when the hearts or isolated myocytes were stimulated with isoproterenol, PDE5A inhibition was associated with a suppression of contractility that was coupled to elevated cGMP and increased PKG-1 activity. In contrast, NOS3-null hearts or controls with NOS inhibited by N(G)-nitro-L-arginine methyl ester, or soluble guanylate cyclase (sGC) inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one, showed no effect of PDE5A inhibition on beta-stimulated contractility or PKG-1 activation. This lack of response was not attributable to altered PDE5A gene or protein expression or in vitro PDE5A activity, but rather to an absence of sGC-generated cGMP specifically targeted to PDE5A catabolism and to a loss of PDE5A localization to z-bands. Re-expression of active NOS3 in NOS3-null hearts by adenoviral gene transfer restored PDE5A z-band localization and the antiadrenergic efficacy of PDE5A inhibition. These data support a novel regulatory role of PDE5A in hearts under adrenergic stimulation and highlight specific coupling of PDE5A catabolic regulation with NOS3-derived cGMP attributable to protein subcellular localization and targeted synthetic/catabolic coupling
    corecore