17 research outputs found

    Do Termites Avoid Carcasses? Behavioral Responses Depend on the Nature of the Carcasses

    Get PDF
    BACKGROUND: Undertaking behavior is a significant adaptation to social life in enclosed nests. Workers are known to remove dead colony members from the nest. Such behavior prevents the spread of pathogens that may be detrimental to a colony. To date, little is known about the ethological aspects of how termites deal with carcasses. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we tested the responses to carcasses of four species from different subterranean termite taxa: Coptotermes formosanus Shiraki and Reticulitermes speratus (Kolbe) (lower termites) and Microcerotermes crassus Snyder and Globitermes sulphureus Haviland (higher termites). We also used different types of carcasses (freshly killed, 1-, 3-, and 7-day-old, and oven-killed carcasses) and mutilated nestmates to investigate whether the termites exhibited any behavioral responses that were specific to carcasses in certain conditions. Some behavioral responses were performed specifically on certain types of carcasses or mutilated termites. C. formosanus and R. speratus exhibited the following behaviors: (1) the frequency and time spent in antennating, grooming, and carcass removal of freshly killed, 1-day-old, and oven-killed carcasses were high, but these behaviors decreased as the carcasses aged; (2) the termites repeatedly crawled under the aging carcass piles; and (3) only newly dead termites were consumed as a food source. In contrast, M. crassus and G. sulphureus workers performed relatively few behavioral acts. Our results cast a new light on the previous notion that termites are necrophobic in nature. CONCLUSION: We conclude that the behavioral response towards carcasses depends largely on the nature of the carcasses and termite species, and the response is more complex than was previously thought. Such behavioral responses likely are associated with the threat posed to the colony by the carcasses and the feeding habits and nesting ecology of a given species

    The Latest Iteration of IPCC Uncertainty Guidance: An Author Perspective

    Get PDF
    The latest iteration of Intergovernmental Panel on Climate Change (IPCC) uncertainty guidance is simpler and easier to use than the previous version. However, its primary focus remains assessing “what is at risk” under climate change, thus is most suitable for dealing with the scientific uncertainties in Working Group I and part of Working Group II findings. I distinguish between tame and complex risks, arguing that the guidance is most suited to assessing tame risks. Climate change is a complex risk, and as such as can be divided into idealized, calculated and perceived risks. While science has claims to objectivity, risk has a specific value component: when measuring gain and loss, calculated risks compete with risky options to manage those risks. The IPCC is charged with calculating risk (IPCC 2007, p22) but the communication of key findings takes place in an environment of competing perceived risks. Recommendations for managing this complex environment include separating scientific and risk-based findings, treating uncertainties for each separately; strengthening the philosophical basis of uncertainty management; application of a methodical scientific research program; clearly communicating competing findings, especially in the social sciences; and application of multiple frame to policy-relevant findings as reflected in the literature
    corecore