19 research outputs found

    Current trends in the cardiovascular clinical trial arena (I)

    Get PDF
    The existence of effective therapies for most cardiovascular disease states, coupled with increased requirements that potential benefits of new drugs be evaluated on clinical rather than surrogate endpoints, makes it increasingly difficult to substantiate any incremental improvements in efficacy that these new drugs might offer. Compounding the problem is the highly controversial issue of comparing new agents with placebos rather than active pharmaceuticals in drug efficacy trials. Despite the recent consensus that placebos may be used ethically in well-defined, justifiable circumstances, the problem persists, in part because of increased scrutiny by ethics committees but also because of considerable lingering disagreement regarding the propriety and scientific value of placebo-controlled trials (and trials of antihypertensive drugs in particular). The disagreement also substantially affects the most viable alternative to placebo-controlled trials: actively controlled equivalence/noninferiority trials. To a great extent, this situation was prompted by numerous previous trials of this type that were marked by fundamental methodological flaws and consequent false claims, inconsistencies, and potential harm to patients. As the development and use of generic drugs continue to escalate, along with concurrent pressure to control medical costs by substituting less-expensive therapies for established ones, any claim that a new drug, intervention, or therapy is "equivalent" to another should not be accepted without close scrutiny. Adherence to proper methods in conducting studies of equivalence will help investigators to avoid false claims and inconsistencies. These matters will be addressed in the third article of this three-part series

    A Single-Stranded DNA Aptamer That Selectively Binds to Staphylococcus aureus Enterotoxin B

    Get PDF
    The bacterium Staphylococcus aureus is a common foodborne pathogen capable of secreting a cocktail of small, stable, and strain-specific, staphylococcal enterotoxins (SEs). Staphylococcal food poisoning (SFP) results when improperly handled food contaminated with SEs is consumed. Gastrointestinal symptoms of SFP include emesis, diarrhea and severe abdominal pain, which manifest within hours of ingesting contaminated food. Immuno-affinity based methods directly detect, identify, and quantify several SEs within a food or clinical sample. However, the success of these assays depends upon the availability of a monoclonal antibody, the development of which is non-trivial and costly. The current scope of the available immuno-affinity based methods is limited to the classical SEs and does not encompass all of the known or emergent SEs. In contrast to antibodies, aptamers are short nucleic acids that exhibit high affinity and specificity for their targets without the high-costs and ethical concerns of animal husbandry. Further, researchers may choose to freely distribute aptamers and develop assays without the proprietary issues that increase the per-sample cost of immuno-affinity assays. This study describes a novel aptamer, selected in vitro, with affinity to staphylococcal enterotoxin B (SEB) that may be used in lieu of antibodies in SE detection assays. The aptamer, designated APTSEB1, successfully isolates SEB from a complex mixture of SEs with extremely high discrimination. This work sets the foundation for future aptamer and assay development towards the entire family of SEs. The rapid, robust, and low-cost identification and quantification of all of the SEs in S. aureus contaminated food is essential for food safety and epidemiological efforts. An in vitro generated library of SE aptamers could potentially allow for the comprehensive and cost-effective analysis of food samples that immuno-affinity assays currently cannot provide

    Charged and Hydrophobic Surfaces on the A Chain of Shiga-Like Toxin 1 Recognize the C-Terminal Domain of Ribosomal Stalk Proteins

    Get PDF
    Shiga-like toxins are ribosome-inactivating proteins (RIP) produced by pathogenic E. coli strains that are responsible for hemorrhagic colitis and hemolytic uremic syndrome. The catalytic A1 chain of Shiga-like toxin 1 (SLT-1), a representative RIP, first docks onto a conserved peptide SD[D/E]DMGFGLFD located at the C-terminus of all three eukaryotic ribosomal stalk proteins and halts protein synthesis through the depurination of an adenine base in the sarcin-ricin loop of 28S rRNA. Here, we report that the A1 chain of SLT-1 rapidly binds to and dissociates from the C-terminal peptide with a monomeric dissociation constant of 13 µM. An alanine scan performed on the conserved peptide revealed that the SLT-1 A1 chain interacts with the anionic tripeptide DDD and the hydrophobic tetrapeptide motif FGLF within its sequence. Based on these 2 peptide motifs, SLT-1 A1 variants were generated that displayed decreased affinities for the stalk protein C-terminus and also correlated with reduced ribosome-inactivating activities in relation to the wild-type A1 chain. The toxin-peptide interaction and subsequent toxicity were shown to be mediated by cationic and hydrophobic docking surfaces on the SLT-1 catalytic domain. These docking surfaces are located on the opposite face of the catalytic cleft and suggest that the docking of the A1 chain to SDDDMGFGLFD may reorient its catalytic domain to face its RNA substrate. More importantly, both the delineated A1 chain ribosomal docking surfaces and the ribosomal peptide itself represent a target and a scaffold, respectively, for the design of generic inhibitors to block the action of RIPs

    micropan: an R-package for microbial pan-genomics

    Get PDF
    BACKGROUND: A pan-genome is defined as the set of all unique gene families found in one or more strains of a prokaryotic species. Due to the extensive within-species diversity in the microbial world, the pan-genome is often many times larger than a single genome. Studies of pan-genomes have become popular due to the easy access to whole-genome sequence data for prokaryotes. A pan-genome study reveals species diversity and gene families that may be of special interest, e.g because of their role in bacterial survival or their ability to discriminate strains. RESULTS: We present an R package for the study of prokaryotic pan-genomes. The R computing environment harbors endless possibilities with respect to statistical analyses and graphics. External free software is used for the heavy computations involved, and the R package provides functions for building a computational pipeline. CONCLUSIONS: We demonstrate parts of the package on a data set for the gram positive bacterium Enterococcus faecalis. The package is free to download and install from The Comprehensive R Archive Network. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0517-0) contains supplementary material, which is available to authorized users

    A synthetic homing endonuclease-based gene drive system in the human malaria mosquito

    No full text
    Genetic methods of manipulating or eradicating disease vector populations have long been discussed as an attractive alternative to existing control measures because of their potential advantages in terms of effectiveness and species specificity(1–3). The development of genetically engineered malaria-resistant mosquitoes has shown, as a proof-of-principle, the possibility of targeting the mosquito’s ability to serve as a disease vector(4–7). The translation of these achievements into control measures requires an effective technology to spread a genetic modification from laboratory mosquitoes to field populations(8). We have previously suggested that homing endonuclease genes (HEGs), a class of simple selfish genetic elements, could be exploited for this purpose(9). Here we demonstrate that a synthetic genetic element, consisting of mosquito regulatory regions(10) and the homing endonuclease gene I-SceI(11–13), can substantially increase its transmission to the progeny in transgenic mosquitoes of the human malaria vector Anopheles gambiae. We show that the I-SceI element is able to rapidly invade receptive mosquito cage populations, validating mathematical models for the transmission dynamics of HEGs. Molecular analyses confirm that expression of I-SceI in the male germline induces high rates of site-specific chromosomal cleavage and gene conversion, which results in the gain of the I-SceI gene, and underlies the observed genetic drive. These findings demonstrate a new mechanism by which genetic control measures can be implemented. Our results also show in principle how sequence-specific genetic drive elements like HEGs could be used to take the step from the genetic engineering of individuals to the genetic engineering of populations
    corecore