16 research outputs found
Enhanced Brain Disposition and Effects of Δ9-Tetrahydrocannabinol in P-Glycoprotein and Breast Cancer Resistance Protein Knockout Mice
The ABC transporters P-glycoprotein (P-gp, Abcb1) and breast cancer resistance protein (Bcrp, Abcg2) regulate the CNS disposition of many drugs. The main psychoactive constituent of cannabis Δ9-tetrahydrocannabinol (THC) has affinity for P-gp and Bcrp, however it is unknown whether these transporters modulate the brain accumulation of THC and its functional effects on the CNS. Here we aim to show that mice devoid of Abcb1 and Abcg2 retain higher brain THC levels and are more sensitive to cannabinoid-induced hypothermia than wild-type (WT) mice. Abcb1a/b (−/−), Abcg2 (−/−) and wild-type (WT) mice were injected with THC before brain and blood were collected and THC concentrations determined. Another cohort of mice was examined for THC-induced hypothermia by measuring rectal body temperature. Brain THC concentrations were higher in both Abcb1a/b (−/−) and Abcg2 (−/−) mice than WT mice. ABC transporter knockout mice exhibited delayed elimination of THC from the brain with the effect being more prominent in Abcg2 (−/−) mice. ABC transporter knockout mice were more sensitive to THC-induced hypothermia compared to WT mice. These results show P-gp and Bcrp prolong the brain disposition and hypothermic effects of THC and offer a novel mechanism for both genetic vulnerability to the psychoactive effects of cannabis and drug interactions between CNS therapies and cannabis
Genome-Wide Association Study in Bipolar Patients Stratified by Co-Morbidity
Bipolar disorder is a severe psychiatric disorder with high heritability. Co-morbid conditions are common and might define latent subgroups of patients that are more homogeneous with respect to genetic risk factors.In the Caucasian GAIN bipolar disorder sample of 1000 cases and 1034 controls, we tested the association of single nucleotide polymorphisms with patient subgroups defined by co-morbidity.). All three associations were found under the recessive genetic model. Bipolar disorder with low probability of co-morbid conditions did not show significant associations.Conceptualizing bipolar disorder as a heterogeneous disorder with regard to co-morbid conditions might facilitate the identification of genetic risk alleles. Rare variants might contribute to the susceptibility to bipolar disorder
AKT1 Moderation of Cannabis-Induced Cognitive Alterations in Psychotic Disorder
Genetic variation in AKT1 may be associated with sensitivity to the psychotomimetic effects of cannabis as well as with increased risk for psychotic disorder following cannabis use. Investigation of the effect of this interaction on relevant intermediate phenotypes for psychosis, such as cognition, may help to clarify the underlying mechanism. Thus, verbal memory (visually presented Word Learning Task), sustained attention (Continuous Performance Test, CPT), AKT1 rs2494732 genotype, and cannabis use were examined in a large cohort of patients with psychotic disorder. No evidence was found for AKT1 x cannabis interaction on verbal memory. Cannabis use preceding onset of psychotic disorder did interact significantly with AKT1 rs2494732 genotype to affect CPT reaction time (beta=8.0, SE 3.9, p=0.037) and CPT accuracy (beta=-1.2, SE 0.4, p=0.003). Cannabis-using patients with the a priori vulnerability C/C genotype were slower and less accurate on the CPT, whereas cannabis-using patients with the T/T genotype had similar or better performance than non-using patients with psychotic disorder. The interaction was also apparent in patients with psychotic disorder who had not used cannabis in the 12 months preceding assessment, but was absent in the unaffected siblings of these patients and in healthy controls. In conclusion, cannabis use before onset of psychosis may have long-lasting effects on measures of sustained attention, even in the absence of current use, contingent on AKT1 rs2494732 genotype. The results suggest that long-term changes in cognition may mediate the risk-increasing effect of the AKT1 x cannabis interaction on psychotic disorder.Neuropsychopharmacology advance online publication, 20 July 2011; doi:10.1038/npp.2011.141