43 research outputs found

    Genes Are Often Sheltered from the Global Histone Hyperacetylation Induced by HDAC Inhibitors

    Get PDF
    Histone deacetylase inhibitors (HDACi) are increasingly used as therapeutic agents, but the mechanisms by which they alter cell behaviour remain unclear. Here we use microarray expression analysis to show that only a small proportion of genes (∼9%) have altered transcript levels after treating HL60 cells with different HDACi (valproic acid, Trichostatin A, suberoylanilide hydroxamic acid). Different gene populations respond to each inhibitor, with as many genes down- as up-regulated. Surprisingly, HDACi rarely induced increased histone acetylation at gene promoters, with most genes examined showing minimal change, irrespective of whether genes were up- or down-regulated. Many genes seem to be sheltered from the global histone hyperacetyation induced by HDACi

    Molecular analysis of the myosin gene family in Arabidopsis thaliana

    Full text link
    Myosin is believed to act as the molecular motor for many actin-based motility processes in eukaryotes. It is becoming apparent that a single species may possess multiple myosin isoforms, and at least seven distinct classes of myosin have been identified from studies of animals, fungi, and protozoans. The complexity of the myosin heavy-chain gene family in higher plants was investigated by isolating and characterizing myosin genomic and cDNA clones from Arabidopsis thaliana . Six myosin-like genes were identified from three polymerase chain reaction (PCR) products (PCR1, PCR11, PCR43) and three cDNA clones (ATM2, MYA2, MYA3). Sequence comparisons of the deduced head domains suggest that these myosins are members of two major classes. Analysis of the overall structure of the ATM2 and MYA2 myosins shows that they are similar to the previously-identified ATM1 and MYA1 myosins, respectively. The MYA3 appears to possess a novel tail domain, with five IQ repeats, a six-member imperfect repeat, and a segment of unique sequence. Northern blot analyses indicate that some of the Arabidopsis myosin genes are preferentially expressed in different plant organs. Combined with previous studies, these results show that the Arabidopsis genome contains at least eight myosin-like genes representing two distinct classes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43437/1/11103_2004_Article_BF00040695.pd

    Photomodulated Reflectivity Measurement of Free-Carrier Dynamics in InGaN/GaN Quantum Wells

    No full text
    We describe a novel technique for measuring carrier dynamics in solid-state optical materials based on photomodulated reflectivity (PMR) and, as an example, apply it to a study of an InGaN/GaN multi-quantum-well (QW) structure grown on a c-plane sapphire substrate. The technique is a form of frequency modulation spectroscopy and relies on probing changes in refractive index induced by fluctuations in free-carrier density during optical excitation. We show that it is possible to accurately determine both carrier density and lifetime, independent of any photoluminescence (PL) measurement and with no knowledge of the incident, or fraction of absorbed, laser power, quantities that can give rise to considerable uncertainties in PL studies. We demonstrate that such uncertainties can lead to an order of magnitude underestimation of the total photogenerated carrier density and compromised accuracy in determining carrier lifetime. We determine, by a comparison of the two techniques, PMR and PL, the nonradiative Shockley-Reed-Hall (SRH), radiative (excitonic), and nonradiative Auger-related coefficients (from the standard ABC model). We find marked differences in the carrier-density-dependent lifetime, determined from PMR, translate to significant differences in the SRH and excitonic coefficients, which we believe relate to the more accurate determination of carrier densities in PMR than in PL. We also find evidence from the PMR for a change in effective mass of the photoexcited carriers with excitation intensity, which points to a complex localization/delocalization mechanism, likely facilitated by random fluctuations in indium content and QW width, consistent with previous findings by independent methods

    Assessment of the effect of the COVID-19 pandemic on UK HbA1c testing: implications for diabetes management and diagnosis.

    No full text
    AIMS: The COVID-19 pandemic, and the focus on mitigating its effects, has disrupted diabetes healthcare services worldwide. We aimed to quantify the effect of the pandemic on diabetes diagnosis/management, using glycated haemoglobin (HbA1c) as surrogate, across six UK centres. METHODS: Using routinely collected laboratory data, we estimated the number of missed HbA1c tests for 'diagnostic'/'screening'/'management' purposes during the COVID-19 impact period (CIP; 23 March 2020 to 30 September 2020). We examined potential impact in terms of: (1) diabetes control in people with diabetes and (2) detection of new diabetes and prediabetes cases. RESULTS: In April 2020, HbA1c test numbers fell by ~80%. Overall, across six centres, 369 871 tests were missed during the 6.28 months of the CIP, equivalent to >6.6 million tests nationwide. We identified 79 131 missed 'monitoring' tests in people with diabetes. In those 28 564 people with suboptimal control, this delayed monitoring was associated with a 2-3 mmol/mol HbA1c increase. Overall, 149 455 'screening' and 141 285 'diagnostic' tests were also missed. Across the UK, our findings equate to 1.41 million missed/delayed diabetes monitoring tests (including 0.51 million in people with suboptimal control), 2.67 million screening tests in high-risk groups (0.48 million within the prediabetes range) and 2.52 million tests for diagnosis (0.21 million in the pre-diabetes range; ~70 000 in the diabetes range). CONCLUSIONS: Our findings illustrate the widespread collateral impact of implementing measures to mitigate the impact of COVID-19 in people with, or being investigated for, diabetes. For people with diabetes, missed tests will result in further deterioration in diabetes control, especially in those whose HbA1c levels are already high
    corecore