169 research outputs found

    Fish Oil Enhances Recovery of Intestinal Microbiota and Epithelial Integrity in Chronic Rejection of Intestinal Transplant

    Get PDF
    The intestinal chronic rejection (CR) is the major limitation to long-term survival of transplanted organs. This study aimed to investigate the interaction between intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplantation, and to find out whether fish oil enhances recovery of intestinal microbiota and epithelial integrity.. In addition, CR rats showed pronounced alteration of tight junction, depicted by marked changes in epithelial cell ultrastructure and redistribution of occuldin and claudins as well as disruption in TJ barrier function. Fish oil administration ameliorated disruption of epithelial integrity in CR, which was associated with an improvement of the mucosal structure leading to improved tight junctions.Our study have presented novel evidence that fish oil is involved in the maintenance of epithelial TJ integrity and recovery of gut microbiota, which may have therapeutic potential against CR in intestinal transplantation

    Retinoids Regulate the Formation and Degradation of Gap Junctions in Androgen-Responsive Human Prostate Cancer Cells

    Get PDF
    The retinoids, the natural or synthetic derivatives of Vitamin A (retinol), are essential for the normal development of prostate and have been shown to modulate prostate cancer progression in vivo as well as to modulate growth of several prostate cancer cell lines. 9-cis-retinoic acid and all-trans-retinoic acid are the two most important metabolites of retinol. Gap junctions, formed of proteins called connexins, are ensembles of intercellular channels that permit the exchange of small growth regulatory molecules between adjoining cells. Gap junctional communication is instrumental in the control of cell growth. We examined the effect of 9-cis-retinoic acid and all-trans retinoic acid on the formation and degradation of gap junctions as well as on junctional communication in an androgen-responsive prostate cancer cell line, LNCaP, which expressed retrovirally introduced connexin32, a connexin expressed by the luminal cells and well-differentiated cells of prostate tumors. Our results showed that 9-cis-retinoic acid and all-trans retinoic acid enhanced the assembly of connexin32 into gap junctions. Our results further showed that 9-cis-retinoic acid and all-trans-retinoic acid prevented androgen-regulated degradation of gap junctions, post-translationally, independent of androgen receptor mediated signaling. Finally, our findings showed that formation of gap junctions sensitized connexin32-expressing LNCaP cells to the growth modifying effects of 9-cis-retinoic acid, all-trans-retinoic acid and androgens. Thus, the effects of retinoids and androgens on growth and the formation and degradation of gap junctions and their function might be related to their ability to modulate prostate growth and cancer

    Identifying the components of the solid–electrolyte interphase in Li-ion batteries

    Get PDF
    The importance of the solid–electrolyte interphase (SEI) for reversible operation of Li-ion batteries has been well established, but the understanding of its chemistry remains incomplete. The current consensus on the identity of the major organic SEI component is that it consists of lithium ethylene di-carbonate (LEDC), which is thought to have high Li-ion conductivity, but low electronic conductivity (to protect the Li/C electrode). Here, we report on the synthesis and structural and spectroscopic characterizations of authentic LEDC and lithium ethylene mono-carbonate (LEMC). Direct comparisons of the SEI grown on graphite anodes suggest that LEMC, instead of LEDC, is likely to be the major SEI component. Single-crystal X-ray diffraction studies on LEMC and lithium methyl carbonate (LMC) reveal unusual layered structures and Li+ coordination environments. LEMC has Li+ conductivities of >1 × 10−6 S cm−1, while LEDC is almost an ionic insulator. The complex interconversions and equilibria of LMC, LEMC and LEDC in dimethyl sulfoxide solutions are also investigated

    Habitat correlates of Eurasian woodcock Scolopax rusticola abundance in a declining resident population

    Get PDF
    In Europe, woodland bird populations have been declining since at least the 1970s, and in Britain, around one third of woodland bird species have undergone declines over this period. Habitat change has been highlighted as a possible cause, but for some species clear evidence of this is lacking owing to an incomplete knowledge of the species’ habitat requirements. Here, we analyse national data to explain the variation in abundance of a declining woodland bird, the Eurasian Woodcock. A nationwide, species-specific survey of breeding Woodcock was conducted in 2003 and 2013 at 807 and 823 randomly selected 1-km squares respectively. The counts were compared with a range of landscape-scale habitat variables as well as local habitat measures recorded by surveyors, using generalised linear mixed models. Habitat variables were measured at a variety of spatial scales using ring buffers, although our analyses show that strong collinearity between scales hinders interpretation. At large landscape scales, breeding Woodcock abundance was correlated with total woodland area and the way this interacted with woodland type. Woodcock were more abundant in woods containing a more heterogeneous mix of woodland habitat types and in woods further from urban areas. On a smaller spatial scale, Woodcock were less likely to be found at sites dominated by beech Fagus spp. and more likely to occur in woods containing birch Betula spp. The Woodcock’s association with large, heterogeneous woods and the apparent attractiveness of certain woodland types present the most relevant topics for future research into the role of habitat change in long-term declines

    How robust are community-based plant bioindicators? Empirical testing of the relationship between Ellenberg values and direct environmental measures in woodland communities

    Get PDF
    There are several community-based bioindicator systems that use species presence or abundance data as proxies for environmental variables. One example is the Ellenberg system, whereby vegetation data are used to estimate environmental soil conditions. Despite widespread use of Ellenberg values in ecological research, the correlation between bioindicated values and actual values is often an implicit assumption rather than based on empirical evidence. Here, we correlate unadjusted and UK-adjusted Ellenberg values for soil moisture, pH, and nitrate in relation to direct environmental measures for 50 woodland sites in the UK, which were subject to repeat sampling. Our results show the accuracy of Ellenberg values is parameter specific; pH values were a good proxy for direct environmental measures but this was not true for soil moisture, when relationships were weak and non-significant. For nitrates, there were important seasonal differences, with a strong positive logarithmic relationship in the spring but a non-significant (and negative) correlation in summer. The UK-adjusted values were better than, or equivalent to, Ellenberg’s original ones, which had been quantified originally for Central Europe, in all cases. Somewhat surprisingly, unweighted values correlated with direct environmental measures better than did abundance-weighted ones. This suggests that the presence of rare plants can be highly important in accurate quantification of soil parameters and we recommend using an unweighted approach. However, site profiles created only using rare plants were inferior to profiles based on the whole plant community and thus cannot be used in isolation. We conclude that, for pH and nitrates, the Ellenberg system provides a useful estimate of actual conditions, but recalibration of moisture values should be considered along with the effect of seasonality on the efficacy of the system

    Gap junction structures. IV. Asymmetric features revealed by low-irradiation microscopy.

    No full text
    Micrographs of mouse liver gap junctions, isolated with detergents, and negatively stained with uranyl acetate, have been recorded by low-irradiation methods. Our Fourier-averaged micrographs of the hexagonal junction lattice show skewed, hexameric connexons with less stain at the threefold axis than at the six indentations between the lobes of the connexon image. These substructural features, not clearly observed previously, are acutely sensitive to irradiation. After an electron dose less than that normally used in microscopy, the image is converted to the familiar doughnut shape, with a darkly stained center and a smooth hexagonal outline, oriented with mirror symmetry in the lattice. Differences in appearance among 25 reconstructed images from our low-irradiation micrographs illustrate variation in staining of the connexon channel and the space between connexons. Consistently observed stain concentration at six symmetrically related sites approximately 34 A from the connexon center, 8 degrees to the right or left of the (1, 1) lattice vector may reveal an intrinsic asymmetric feature of the junction structure. The unexpected skewing of the six-lobed connexon image suggests that the pair of hexagonal membrane arrays that form the junction may not be structurally identical. Because the projected image of the connexon pair itself appears mirror symmetric, each pair may consist of two identical connexon hexamers related by local (noncrystallographic) twofold axes in the junctional plane at the middle of the gap. All connexons may be chemically identical, but their packing in the hexagonal arrays on the two sides of the junction appears to be nonequivalent
    • …
    corecore