7 research outputs found

    Vocal Learning and Auditory-Vocal Feedback

    Get PDF
    Vocal learning is usually studied in songbirds and humans, species that can form auditory templates by listening to acoustic models and then learn to vocalize to match the template. Most other species are thought to develop vocalizations without auditory feedback. However, auditory input influences the acoustic structure of vocalizations in a broad distribution of birds and mammals. Vocalizations are dened here as sounds generated by forcing air past vibrating membranes. A vocal motor program may generate vocalizations such as crying or laughter, but auditory feedback may be required for matching precise acoustic features of vocalizations. This chapter discriminates limited vocal learning, which uses auditory input to fine-tune acoustic features of an inherited auditory template, from complex vocal learning, in which novel sounds are learned by matching a learned auditory template. Two or three songbird taxa and four or ve mammalian taxa are known for complex vocal learning. A broader range of mammals converge in the acoustic structure of vocalizations when in socially interacting groups, which qualifies as limited vocal learning. All birds and mammals tested use auditory-vocal feedback to adjust their vocalizations to compensate for the effects of noise, and many species modulate their signals as the costs and benefits of communicating vary. This chapter asks whether some auditory-vocal feedback may have provided neural substrates for the evolution of vocal learning. Progress will require more precise definitions of different forms of vocal learning, broad comparative review of their presence and absence, and behavioral and neurobiological investigations into the mechanisms underlying the skills.PostprintPeer reviewe

    Role of hydration in determining the structure and vibrational spectra of L-alanine and N-acetyl L-alanine N'-methylamide in aqueous solution: a combined theoretical and experimental approach

    No full text
    In this work we have utilised recent density functional theory Born-oppenheimer molecular dynamics simulations to determine the first principles locations of the water molecules in the first solvation shell which are responsible for stabilizing the zwitterionic structure of L-alanine. Previous works have used chemical intuition or classical molecular dynamics simulations to position the water molecules. In addition, a complete shell of water molecules was not previously used, only the water molecules which were thought to be strongly interacting (H-bonded) with the zwitterionic species. In a previous work by Tajkhorshid et al. (J Phys Chem B 102:5899) the l-alanine zwitterion was stabilized by 4 water molecules, and a subsequent work by Frimand et al. (Chem Phys 255:165) the number was increased to 9 water molecules. Here we found that 20 water molecules are necessary to fully encapsulate the zwitterionic species when the molecule is embedded within a droplet of water, while 11watermolecules are necessary to encapsulate the polar region with themethyl group exposed to the surface, where it migrates during the MD simulation. Here we present our vibrational absorption, vibrational circular dichroism and Raman and Raman optical activity simulations, which we compare to the previous simulations and experimental results. In addition, we report new VA, VCD, Raman and ROA measurements for l-alanine in aqueous solution with the latest commercially available FTIR VA/VCD instrument (Biotools, Jupiter, FL, USA) and Raman/ROA instrument (Biotools). The signal to noise of the spectra of l-alanine measured with these new instruments is significantly better than the previously reported spectra. Finally we reinvestigate the causes for the stability of the Pp structure of the alanine dipeptide, also called N-acetyl-l-alanine N-methylamide, in aqueous solution. Previously we utilized the B3LYP/6-31G* + Onsager continuum level of theory to investigate the stability of the ALANMA4WC Han et al. (J Phys Chem B 102:2587) Here we use the B3PW91 and B3LYP hybrid exchange correlation functionals, the aug-cc-pVDZ basis set and the PCMand CPCM (COSMO) continuum solvent models, in addition to the Onsager and no continuum solvent model. Here by the comparison of the VA, VCD, Raman and ROA spectra we can confirm the stability of the NALANMA4WC due to the strong hydrogen bonding between the fourwatermolecules and the peptide polar groups. Hence we advocate the use of explicit water molecules and continuum solvent treatment for all future spectral simulations of amino acids, peptides and proteins in aqueous solution, as even the structure (conformer) present cannot always be found without this level of theory

    N-Alkylation by Hydrogen Autotransfer Reactions

    No full text
    corecore