9 research outputs found

    Universal allosteric mechanism for Gα activation by GPCRs

    No full text
    G protein-coupled receptors (GPCRs) allosterically activate heterotrimeric G proteins and trigger GDP release. Given that there are ~800 human GPCRs and 16 different Gα proteins, does a universal allosteric mechanism govern Gα activation? Here we show that different GPCRs interact and activate Gα proteins through a highly conserved mechanism. Comparison of Gα with the small G protein Ras reveals how the evolution of short segments that can undergo disorder-order transitions decouple regions important for allosteric activation from receptor binding specificity. This might explain how the GPCR-Gα system diversified rapidly, whilst conserving the allosteric activation mechanism

    Ras oncogenes: split personalities

    No full text

    PRMT Inhibitors

    No full text
    The methylation of arginine residues in numerous protein targets is a post-translational modification that has gained increased interest in the scientific community over the past two decades. Arginine methylation is performed by the dedicated family of protein arginine methyltransferases and is known to be involved in a plethora of cellular pathways and biochemical mechanisms in both healthy and disease states. The development of inhibitors for these enzymes for use as biological tools can lead to a more detailed understanding of the functions of the different members of the PRMT family. In addition, a number of recent studies point towards PRMTs as therapeutic targets for a number of diseases and the first clinical trials with compounds inhibiting PRMTs are now underway. We here provide a broad overview of the current status of the inhibitors that have been developed against PRMTs using both high-throughput screening and rational design approaches.Microbial Biotechnolog
    corecore