34 research outputs found

    Direct patterning of gold nanoparticles using flexographic printing for biosensing applications

    Get PDF
    In this paper, we have presented the use of flexographic printing techniques in the selective patterning of gold nanoparticles (AuNPs) onto a substrate. Highly uniform coverage of AuNPs was selectively patterned on the substrate surface, which was subsequently used in the development of a glucose sensor. These AuNPs provide a biocompatible site for the attachment of enzymes and offer high sensitivity in the detection of glucose due to their large surface to volume ratio. The average size of the printed AuNPs is less than 60 nm. Glucose sensing tests were performed using printed carbon-AuNP electrodes functionalized with glucose oxidase (GOx). The results showed a high sensitivity of 5.52 μA mM−1 cm−2 with a detection limit of 26 μM. We have demonstrated the fabrication of AuNP-based biosensors using flexographic printing, which is ideal for low-cost, high-volume production of the devices

    Synthesis and Magnetic Properties of Maghemite (γ-Fe2O3) Short-Nanotubes

    Get PDF
    We report a rational synthesis of maghemite (γ-Fe2O3) short-nanotubes (SNTs) by a convenient hydrothermal method and subsequent annealing process. The structure, shape, and magnetic properties of the SNTs were investigated. Room-temperature and low-temperature magnetic measurements show that the as-fabricated γ-Fe2O3 SNTs are ferromagnetic, and its coercivity is nonzero when the temperature above blocking temperature (TB). The hysteresis loop was operated to show that the magnetic properties of γ-Fe2O3 SNTs are strongly influenced by the morphology of the crystal. The unique magnetic behaviors were interpreted by the competition of the demagnetization energy of quasi-one-dimensional nanostructures and the magnetocrystalline anisotropy energy of particles in SNTs

    Clustering of smoking, alcohol drinking and cannabis use in adolescents in a rapidly developing country

    Get PDF
    BACKGROUND: Smoking, alcohol drinking and cannabis use ("risk behaviors") are often initiated at a young age but few epidemiological studies have assessed their joined prevalence in children in developing countries. This study aims at examining the joint prevalence of these behaviors in adolescents in the Seychelles, a rapidly developing country in the Indian Ocean. METHODS: Cross-sectional survey in a representative sample of secondary school students using an anonymous self-administered questionnaire (Global Youth Tobacco Survey). The questionnaire was completed by 1,321 (92%) of 1,442 eligible students aged 11 to 17 years. Main variables of interest included smoking cigarettes on ≥1 day in the past 30 days; drinking any alcohol beverage on ≥1 day in the past 30 days and using cannabis at least once in the past 12 months. RESULTS: In boys and girls, respectively, prevalence (95% CI) was 30% (26–34)/21% (18–25) for smoking, 49% (45–54)/48% (43–52) for drinking, and 17% (15–20)/8% (6–10) for cannabis use. The prevalence of all these behaviors increased with age. Smokers were two times more likely than non-smokers to drink and nine times more likely to use cannabis. Drinkers were three times more likely than non-drinkers to smoke or to use cannabis. Comparison of observed versus expected frequencies of combination categories demonstrated clustering of these risk behaviors in students (P < 0.001). CONCLUSION: Smoking, drinking and cannabis use were common and clustered among adolescents of a rapidly developing country. These findings stress the need for early and integrated prevention programs

    Identification and Functional Analysis of Antifungal Immune Response Genes in Drosophila

    Get PDF
    Essential aspects of the innate immune response to microbial infection appear to be conserved between insects and mammals. Although signaling pathways that activate NF-κB during innate immune responses to various microorganisms have been studied in detail, regulatory mechanisms that control other immune responses to fungal infection require further investigation. To identify new Drosophila genes involved in antifungal immune responses, we selected genes known to be differentially regulated in SL2 cells by microbial cell wall components and tested their roles in antifungal defense using mutant flies. From 130 mutant lines, sixteen mutants exhibited increased sensitivity to fungal infection. Examination of their effects on defense against various types of bacteria and fungi revealed nine genes that are involved specifically in defense against fungal infection. All of these mutants displayed defects in phagocytosis or activation of antimicrobial peptide genes following infection. In some mutants, these immune deficiencies were attributed to defects in hemocyte development and differentiation, while other mutants showed specific defects in immune signaling required for humoral or cellular immune responses. Our results identify a new class of genes involved in antifungal immune responses in Drosophila

    SPARC Overexpression Inhibits Cell Proliferation in Neuroblastoma and Is Partly Mediated by Tumor Suppressor Protein PTEN and AKT

    Get PDF
    Secreted protein acidic and rich in cysteine (SPARC) is also known as BM-40 or Osteonectin, a multi-functional protein modulating cell–cell and cell–matrix interactions. In cancer, SPARC is not only linked with a highly aggressive phenotype, but it also acts as a tumor suppressor. In the present study, we sought to characterize the function of SPARC and its role in sensitizing neuroblastoma cells to radio-therapy. SPARC overexpression in neuroblastoma cells inhibited cell proliferation in vitro. Additionally, SPARC overexpression significantly suppressed the activity of AKT and this suppression was accompanied by an increase in the tumor suppressor protein PTEN both in vitro and in vivo. Restoration of neuroblastoma cell radio-sensitivity was achieved by overexpression of SPARC in neuroblastoma cells in vitro and in vivo. To confirm the role of the AKT in proliferation inhibited by SPARC overexpression, we transfected neuroblastoma cells with a plasmid vector carrying myr-AKT. Myr-AKT overexpression reversed SPARC-mediated PTEN and increased proliferation of neuroblastoma cells in vitro. PTEN overexpression in parallel with SPARC siRNA resulted in decreased AKT phosphorylation and proliferation in vitro. Taken together, these results establish SPARC as an effector of AKT-PTEN-mediated inhibition of proliferation in neuroblastoma in vitro and in vivo
    corecore