53 research outputs found

    Trait relationships of fungal decomposers in response to drought using a dual field and laboratory approach

    No full text
    Decomposer fungi play a fundamental role in terrestrial ecosystem dynamics. In the southwestern United States, climate change is causing more frequent and severe droughts, which may alter fungal community composition and activity. Investigating relationships between fungal traits may improve the prediction of fungal responses to drought. In this dual field and laboratory experiment, we examine whether trade-offs occur between traits associated with drought. Specifically, we test the hypothesis that fungi sort into lifestyles specializing in growth yield, resource acquisition, and drought stress tolerance (“YAS” framework). For the field experiment, we constructed microbial “cages” containing sterilized litter and 1 of 10 fungal isolates. These cages were placed in long-term drought and control plots in a southern Californian grassland for 6 and 12 months. We measured fungal hyphal length per unit litter mass loss for growth yield, the potential activities of four extracellular enzymes for resource acquisition, and the ability to grow in the drought versus control plots for drought stress tolerance. We compared these results with a laboratory microcosm experiment constructed with the same fungal isolates and that measured the same fungal traits. The field experiment corroborated our laboratory results, in that no trade-offs were observed between growth yield and resource acquisition traits. However, in contrast to the laboratory experiment, drought tolerance was negatively related to extracellular enzyme activity and growth yield in the field, implying a trade-off. Despite this observed trade-off in the field, growth yield was not hindered by drought. We propose a modification to the YAS framework, by combining the growth yield and resource acquisition lifestyles, which may be more appropriate for this arid system. This joint laboratory and field approach contextualizes a theoretical framework in microbial ecology and improves understanding of fungal community response to climate change

    Microbes adjust to heat

    No full text

    Quantifying thermal adaptation of soil microbial respiration

    No full text
    Quantifying the rate of thermal adaptation of soil microbial respiration is essential in determining potential for carbon cycle feedbacks under a warming climate. Uncertainty surrounding this topic stems in part from persistent methodological issues and difficulties isolating the interacting effects of changes in microbial community responses from changes in soil carbon availability. Here, we constructed a series of temperature response curves of microbial respiration (given unlimited substrate) using soils sampled from around New Zealand, including from a natural geothermal gradient, as a proxy for global warming. We estimated the temperature optima (Topt) and inflection point (Tinf) of each curve and found that adaptation of microbial respiration occurred at a rate of 0.29 °C ± 0.04 1SE for Topt and 0.27 °C ± 0.05 1SE for Tinf per degree of warming. Our results bolster previous findings indicating thermal adaptation is demonstrably offset from warming, and may help quantifying the potential for both limitation and acceleration of soil C losses depending on specific soil temperatures
    corecore