76 research outputs found

    The Polyamine Pathway as a Potential Target for Vascular Diseases: Focus on Restenosis

    Get PDF
    Polyamines are organic polycations expressed by all living organisms, which are known to play an essential role in cell proliferation and differentiation. Recent studies revealed their involvement also in cell contractility and migration and in programmed cell death. These processes are known to contribute to restenosis, a pathophysiological process occurring in 10-20% of patients submitted to revascularization procedures. The advent of bare metal stents and of drug-eluting stents has significantly reduced but not eliminated the incidence of restenosis, which thus remains a clinically relevant problem. Despite the potential role of the polyamine pathway as a therapeutic target due to its involvement in proliferation, apoptosis and migration of vascular cells, experimental inhibition of polyamine synthesis and/or uptake has been poorly investigated in animal models of vascular disease. Here we review the current knowledge about molecular mechanisms related to polyamine functions, with particular reference to the role played by polyamines in vascular cell pathophysiology, together with experimental evidence obtained so far in animal models of (re) stenosis. We also evaluate the advantages of different routes of administration of polyamine synthesis/transport inhibitors and polyamine analogue molecules. Increasing knowledge about the molecular mechanisms and functions of polyamines is expected to shed new light on their potential role as a therapeutic target for restenosis reduction

    Brg1 chromatin remodeling factor is involved in cell growth arrest, apoptosis and senescence of rat mesenchymal stem cells.

    Get PDF
    Self-renewal, proliferation and differentiation properties of stem cells are controlled by key transcription factors. However, their activity is modulated by chromatin remodeling factors that operate at the highest hierarchical level. Studies on these factors can be especially important to dissect molecular pathways governing the biology of stem cells. SWI/SNF complexes are adenosine triphosphate (ATP)-dependent chromatin remodeling enzymes that have been shown to be required for cell cycle control, apoptosis and cell differentiation in several biological systems. The aim of our research was to investigate the role of these complexes in the biology of mesenchymal stem cells (MSCs). To this end, in MSCs we caused a forced expression of the ATPase subunit of SWI/SNF (Brg1 – also known as Smarca4) by adenoviral transduction. Forced Brg1 expression induced a significant cell cycle arrest of MSCs in culture. This was associated with a huge increase in apoptosis that reached a peak 3 days after transduction. In addition, we observed signs of senescence in cells having ectopic Brg1 expression. At the molecular level these phenomena were associated with activation of Rb- and p53-related pathways. Inhibition of either p53 or Rb with E1A mutated proteins allowed us to hypothesize that both Rb and p53 are indispensable for Brg1-induced senescence, whereas only p53 seems to play a role in triggering programmed cell death. We also looked at the effects of forced Brg1 expression on canonical MSC differentiation in adipocytes, chondrocytes and osteocytes. Brg1 did not induce cell differentiation per se; however, this protein could contribute, at least in part, to the adipocyte differentiation process. In conclusion, our results suggest that whereas some ATP-dependent chromatin remodeling factors, such as ISWI complexes, promote stem cell self-renewal and conservation of an uncommitted state, others cause an escape from ‘stemness’ and induction of differentiation along with senescence and cell death phenomena

    Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes.

    Get PDF
    Lysosomal storage disorders (LDS) comprise a group of rare multisystemic diseases resulting from inherited gene mutations that impair lysosomal homeostasis. The most common LSDs, Gaucher disease (GD), and Fabry disease (FD) are caused by deficiencies in the lysosomal glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes, respectively. Given the systemic nature of enzyme deficiency, we hypothesized that the stem cell compartment of GD and FD patients might be also affected. Among stem cells, mesenchymal stem cells (MSCs) are a commonly investigated population given their role in hematopoiesis and the homeostatic maintenance of many organs and tissues. Since the impairment of MSC functions could pose profound consequences on body physiology, we evaluated whether GBA and GLA silencing could affect the biology of MSCs isolated from bone marrow and amniotic fluid. Those cell populations were chosen given the former's key role in organ physiology and the latter's intriguing potential as an alternative stem cell model for human genetic disease. Our results revealed that GBA and GLA deficiencies prompted cell cycle arrest along with the impairment of autophagic flux and an increase of apoptotic and senescent cell percentages. Moreover, an increase in ataxia-telangiectasia-mutated staining 1 hr after oxidative stress induction and a return to basal level at 48 hr, along with persistent gamma-H2AX staining, indicated that MSCs properly activated DNA repair signaling, though some damages remained unrepaired. Our data therefore suggest that MSCs with reduced GBA or GLA activity are prone to apoptosis and senescence due to impaired autophagy and DNA repair capacity

    Local inhibition of ornithine decarboxylase reduces vascular stenosis in a murine model of carotid injury

    Get PDF
    Objectives: Polyamines are organic polycations playing an essential role in cell proliferation and differentiation, as well as in cell contractility, migration and apoptosis. These processes are known to contribute to restenosis, a pathophysiological process often occurring in patients submitted to revascularization procedures. We aimed to test the effect of alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, on vascular cell pathophysiology in vitro and in a rat model of carotid arteriotomy-induced (re) stenosis. Methods: The effect of DFMO on primary rat smooth muscle cells (SMCs) and mouse microvascular bEnd. 3 endothelial cells (ECs) was evaluated through the analysis of DNA synthesis, polyamine concentration, cell viability, cell cycle phase distribution and by RT-PCR targeting cyclins and genes belonging to the polyamine pathway. The effect of DFMO was then evaluated in arteriotomy-injured rat carotids through the analysis of cell proliferation and apoptosis, RT-PCR and immunohistochemical analysis of differential gene expression. Results: DFMO showed a differential effect on SMCs and on ECs, with a marked, sustained anti-proliferative effect of DFMO at 3 and 8 days of treatment on SMCs and a less pronounced, late effect on bEnd. 3 ECs at 8 days of DFMO treatment. DFMO applied perivascularly in pluronic gel at arteriotomy site reduced subsequent cell proliferation and preserved smooth muscle differentiation without affecting the endothelial coverage. Lumen area in DFMO-treated carotids was 49% greater than in control arteries 4 weeks after injury. Conclusions: Our data support the key role of polyamines in restenosis and suggest a novel therapeutic approach for this pathophysiological process. (C) 2013 Elsevier Ireland Ltd. All rights reserved

    Is there a role for autophagy in ascending aortopathy associated with tricuspid or bicuspid aortic valve?

    No full text
    Autophagy is a conserved process by which cytoplasmatic elements are sequestered in vesicles and degraded after their fusion with lysosomes, thus recycling the precursor molecules. The autophagy-mediated removal of redundant/harmful/damaged organelles and biomolecules plays not only a replenishing function, but protects against stressful conditions through an adaptive mechanism. Autophagy, known to play a role in several pathological conditions, is now gaining increasing attention also in the perspective of the identification of the pathogenetic mechanisms at the basis of ascending thoracic aortic aneurysm (TAA), a localized or diffused dilatation of the aorta with an abnormal widening greater than 50 percent of the vessel's normal diameter. TAA is less frequent than abdominal aortic aneurysm (AAA), but is encountered with a higher percentage in patients with congenital heart disease or known genetic syndromes. Several biological aspects of TAA pathophysiology remain to be elucitated and therapeutic needs are still widely unmet. One of the most controversial and epidemiologically important forms of TAA is that associated with the congenital bicuspid malformation of the aortic valve (BAV). Dysregulated autophagy in response, for example, to wall shear stress alterations, has been demonstrated to affect the phenotype of vascular cells relevant to aortopathy, with potential consequences on signaling, remodeling, and angiogenesis. The most recent findings and hypotheses concerning the multiple aspects of autophagy and of its dysregulation are summarized, both in general and in the context of the different vascular cell types and of TAA progression, with particular reference to BAV-related aortopathy
    • …
    corecore