4,253 research outputs found
Provably-secure symmetric private information retrieval with quantum cryptography
Private information retrieval (PIR) is a database query protocol that
provides user privacy, in that the user can learn a particular entry of the
database of his interest but his query would be hidden from the data centre.
Symmetric private information retrieval (SPIR) takes PIR further by
additionally offering database privacy, where the user cannot learn any
additional entries of the database. Unconditionally secure SPIR solutions with
multiple databases are known classically, but are unrealistic because they
require long shared secret keys between the parties for secure communication
and shared randomness in the protocol. Here, we propose using quantum key
distribution (QKD) instead for a practical implementation, which can realise
both the secure communication and shared randomness requirements. We prove that
QKD maintains the security of the SPIR protocol and that it is also secure
against any external eavesdropper. We also show how such a classical-quantum
system could be implemented practically, using the example of a two-database
SPIR protocol with keys generated by measurement device-independent QKD.
Through key rate calculations, we show that such an implementation is feasible
at the metropolitan level with current QKD technology.Comment: 19 page
Inverse regression for longitudinal data
Sliced inverse regression (Duan and Li [Ann. Statist. 19 (1991) 505-530], Li
[J. Amer. Statist. Assoc. 86 (1991) 316-342]) is an appealing dimension
reduction method for regression models with multivariate covariates. It has
been extended by Ferr\'{e} and Yao [Statistics 37 (2003) 475-488, Statist.
Sinica 15 (2005) 665-683] and Hsing and Ren [Ann. Statist. 37 (2009) 726-755]
to functional covariates where the whole trajectories of random functional
covariates are completely observed. The focus of this paper is to develop
sliced inverse regression for intermittently and sparsely measured longitudinal
covariates. We develop asymptotic theory for the new procedure and show, under
some regularity conditions, that the estimated directions attain the optimal
rate of convergence. Simulation studies and data analysis are also provided to
demonstrate the performance of our method.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1193 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org). With Correction
Implications of new data in charmless B decays
Based on the latest experimental data of and modes, a
model-independent analytical analysis is presented. The CP-averaged branching
ratio difference in decays with and
is reduced though it remains larger than the prediction from the standard
model(SM) as both measured and are enhanced, which indicates that a
room for new physics becomes smaller. The present data of decay reduce
the ratio from the previous value of to , which is still larger than the theoretical estimations based on
QCD factorization and pQCD. Within SM and flavor SU(3) symmetry, the current
data also diminish the ratio from the previous value to with a large strong phase , while its value remains much larger than the one extracted from
the modes. The direct CP violation is
predicted to be , which is consistent
with the present data. Two kinds of new effects in both strong and weak phases
of the electroweak penguin diagram are considered. It is found that both cases
can reduce the ratio to and lead to roughly the same
predictions for CP violation in .Comment: 13 pages, 4 figure
- …
