Private information retrieval (PIR) is a database query protocol that
provides user privacy, in that the user can learn a particular entry of the
database of his interest but his query would be hidden from the data centre.
Symmetric private information retrieval (SPIR) takes PIR further by
additionally offering database privacy, where the user cannot learn any
additional entries of the database. Unconditionally secure SPIR solutions with
multiple databases are known classically, but are unrealistic because they
require long shared secret keys between the parties for secure communication
and shared randomness in the protocol. Here, we propose using quantum key
distribution (QKD) instead for a practical implementation, which can realise
both the secure communication and shared randomness requirements. We prove that
QKD maintains the security of the SPIR protocol and that it is also secure
against any external eavesdropper. We also show how such a classical-quantum
system could be implemented practically, using the example of a two-database
SPIR protocol with keys generated by measurement device-independent QKD.
Through key rate calculations, we show that such an implementation is feasible
at the metropolitan level with current QKD technology.Comment: 19 page